首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
兼性厌氧细菌Enterobacter cloacae菌株E-26和Klebsiella oxytoca菌株NG-13的氢酶与固氮酶同时形成。固氮的最佳碳源为蔗糖、葡萄糖和丙酮酸,此外延胡索酸和苹果酸也能支持固氮。支持固氮的碳源也支持放氢,两者动力学基本一致。40%乙炔预处理后,吸氢活性下跌,放氢量未增加;NH_4~ 抑制固氮酶,但未导致放氢量降低;可能E-26菌株的放氢主要依赖于氢酶。菌株E-26和NG-13的吸氢反应,既能以O_2为电子受体,也能以延胡索酸、硝酸、MB为电子受体。但仅延胡索酸为电子受体时,E-26菌的固氮活性被分子H_2促进,它的氢吸收利用与固氮相偶联;而在CO_2和NH_4~ 代谢与H_2利用之间并无明显相关性,吸氢活性不被CO_2和NH_4~ 促进。  相似文献   

2.
Gloeocapsa sp., a species of anicellular blue-green alga, fixes dinitrogen mostly under light. The energy (ATP and reductant) needed for nitrogen fixation may be provided by photoreaction and aerobic catabolism. The nitrogenase activity (acetylene reduction) in vivo was decreased under the conditions of dark and inhibition of photo-phosphorylation or oxidative phosphorylation in the light. When photosystem Ⅱ was inhibited by the presence of DCMU, nitrogenase activities in both reactions of acetylene reduction and hydrogen evolution may be muchenhanced probably due to eliminating of the damage caused by the oxygen produced in the photolysis of water. The effects of the oxygen present in the atmosphere of the reaction systemand produced by the cells are different. It is shown that some trace oxygen seems to be required for nitrogen fixation by the energy supply of aerobic actabolism and oxidative phosphorylation. While the fixation of dinitrogen was inhibited by CO or no any reducible substrate was present, 70-100% of the energy accepted by nitrogenase was evolved as hydrogen. The algal cells also showed hydrogen uptake reaction, but no enhancement of nitrogen fixation by the hydrogen uptake was found.  相似文献   

3.
Hydrogen metabolism and energy costs of nitrogen fixation   总被引:1,自引:0,他引:1  
Abstract The high energy costs of biological nitrogen fixation are partly caused by hydrogen production during the reduction of dinitrogen to ammonia. Some nitrogen-fixing organisms can recycle the evolved hydrogen via a membrane-bound uptake hydrogenase. The energetic aspects of hydrogen metabolism and nitrogen fixation are discussed.
Studies on both isolated nitrogenase proteins and nitrogen-fixing chemostat cultures show that energy limitation will result in a high hydrogen production by nitrogenase. In plant- Rhizobium symbiosis, the supply of oxygen or photosynthetate is the limiting factor for nitrogen fixation. In both cases, nitrogen fixation is energy-limited, and it is concluded that a large amount of hydrogen is produced during nitrogen fixation in these symbioses.
Hydrogen reoxidation yields less energy than the oxidation of endogenous substrates, and therefore expression of hydrogenase under oxygen-limited conditions is energetically unfavourable. Moreover, hydrogen reoxidation can never completely regain the energy invested during hydrogen production. The controversial reports of the effect of hydrogen reoxidation on the efficiency of nitrogen fixation are being discussed.
The determination of the energy costs of nitrogen fixation (expressed as the amount of ATP needed to fix 1 mol of N2) using chemostat cultures is described. Calculations show that the nitrogenase-catalysed hydrogen production has more influence on the efficiency of nitrogen fixation than the absence or presence of a hydrogen uptake system.  相似文献   

4.
Two pathways of hydrogen uptake in Nostoc muscorum are apparent using either oxygen or nitrogen as electron acceptor. Hydrogen uptake (under argon with some oxygen as electron acceptor assayed in the dark; oxyhydrogen reaction) is found to be more active in dense, light-limited cultures than in thin cultures when light is not limiting. Addition of bicarbonate inhibits this hydrogen uptake, because photosynthesis is stimulated. In a cell-free hydrogenase assay, a 10-fold increase of the activity can be measured, after the cells having been kept under lightlimiting conditions. After incubation under light-saturating conditions, no hydrogen uptake is found, when filaments are assayed under argon plus some oxygen. Assaying these cells under a nitrogen atmosphere, a strong hydrogen uptake occurs. The corresponding cell-free hydrogenase assay exhibits low hydrogenase activity. Furthermore, the hydrogen uptake by intact filaments under nitrogen in the light apparently is correlated with nitrogenase activity. These studies give evidence that, under certain physiological conditions, hydrogen uptake of heterocysts proceeds directly via nitrogenase, with no hydrogenase involved.Abbreviations Chl chlorophyll - DCMU (diuron) 3-3,4-dichlorophenyl)-1,1-dimethylurea - pev packed cell volume  相似文献   

5.
羊奶果不同发育阶段根瘤的细胞结构及固氮、吸氢活性   总被引:1,自引:0,他引:1  
比较羊奶果根瘤三个不同发育阶段的显微,亚显微结构和固氮,吸氢活性的差异。探讨了根瘤结构与功能的关系。结果表明:早期侵染方式为皮层细胞间隙侵染,此期的内生菌是一种分枝,具隔膜的菌丝体,早期侵染细胞有脂体存在。成熟根瘤含菌细胞明显多于幼瘤和衰老瘤。成熟根瘤具有大量泡囊,成熟泡囊具分隔,双层壁结构。衰老瘤泡囊分隔消失,不呈双层壁结构。成熟根瘤的固氮,吸氢活性明显高于幼瘤和衰老瘤。  相似文献   

6.
Adequate supplies of phosphorus (P) and iron (Fe) to legumes have been shown to be crucial in obtaining high nitrogen fixation rates and growth. These responses are anticipated as a result of the high requirement for P in energy transfer processes in the nodule and for Fe as a constituent of nitrogenase and leghemoglobin. However, little attention has been given to documenting the response of nitrogen fixation rates resulting from concentrations of P and Fe that actually exist in nodules. In particular, an open question is whether there is an interaction between nodule P and Fe concentrations that maximize nitrogen fixation activity. This study was designed to induce various concentrations of P and Fe in the nodule and to measure the resultant nitrogen accumulation and nitrogen fixation rates. Plant nitrogen accumulation was linearly correlated with both nodule P and Fe concentration, and with total plant nitrogen fixation rate as measured by acetylene reduction rate. Therefore, total nitrogen fixation rate was also correlated with nodule P and Fe concentrations, but a higher linear correlation was obtained for Fe as compared to P concentration. Surprisingly, nodule ureide concentration, which is generally assumed to be a positive index of nitrogen fixation rate, was negatively correlated with nodule P and Fe concentrations. These results indicated that higher concentrations of P and Fe in the nodules not only stimulated higher nitrogen fixation rates, but were associated with an enhanced ability to export ureides from the nodules. Since there was a linear response to both P and Fe over the range of nodule concentrations induced in these experiments, no evidence for optimum interactive concentrations of these two elements in the nodules was obtained.  相似文献   

7.
Nodule nitrogen fixation rates are regulated by a mechanism which is responsive to the rhizosphere oxygen concentration. In some legumes, this oxygen-sensitive mechanism appears to involve changes in the gas permeability of a diffusion barrier in the nodule cortex. In soybean evidence for such a mechanism has not been found. The purpose of this research was to make quantitative measurements of soybean nodule gas permeability to test the hypothesis that soybean nodule gas permeability is under physiological control and responsive to the rhizosphere oxygen concentration. Intact hydroponically grown soybean plants were exposed to altered rhizosphere oxygen concentrations, and the nodule gas permeability, acetylene reduction and nodule respiration rates were repeatedly assayed. After a change in the external oxygen concentration, nitrogenase activity and nodule respiration rates displayed a short-term transient response after which the values returned to rates similar to those observed under ambient oxygen conditions. In contrast to steady-state nitrogenase activity and nodule respiration, nodule gas permeability was dramatically affected by the change in oxygen concentration. Decreasing the external oxygen concentration to 0.1 cubic millimeter per cubic millimeter resulted in a mean increase in nodule gas permeability of 63%. Increasing the rhizosphere oxygen concentration resulted in decreased nodule gas permeability. These data are consistent with the hypothesis that soybean nodules are capable of regulating nitrogen fixation and nodule respiration rates in response to changes in the rhizosphere oxygen concentration and indicate that the regulatory mechanism involves physiological control of the nodule gas permeability.  相似文献   

8.
Nitrogen fixation (acetylene reduction) rates of nodules on intact field-grown soybean (Glycine max) subjected to altered oxygen concentration (0.06-0.4 cubic millimeter per cubic millimeter) returned to initial rates during an 8-hour transitory period. Hydroponically grown soybean plants also displayed a transitory (1-4 hours) response to changes in the rhizosphere oxygen concentration after which the fixation rates returned to those observed under ambient oxygen concentrations. It was hypothesized that soybean nodules contain a regulatory mechanism which maintains a stable oxygen concentration inside nodules at a sufficiently low concentration to allow nitrogenase to function. A possible physiological mechanism which could account for this regulation is adjustment in nodule respiration activity such that nodule oxygen concentration and nitrogen fixation are maintained at stable levels. Experiments designed to characterize the non-steady-state oxygen response and to test for the presence of nodule respiratory control are presented. Non-steady-state acetylene reduction and nodule respiration (oxygen uptake) rates measured after alterations in the external oxygen concentration indicated that the regulatory mechanism required 1 to 4 hours to completely adjust to changes in the external oxygen concentration. Steady-state nodule respiration, however, did not respond to alterations in the rhizosphere oxygen concentration. It was concluded that soybean nodules can adjust to a wide range of rhizosphere oxygen concentrations, but the mechanism which controls nitrogen fixation rates does not involve changes in the nodule respiration rate.  相似文献   

9.
Recent research has shown that nodule nitrogen fixation is limited under a wide range of environmental constraints by lowered carbon flux within the nodule due to down-regulation of sucrose synthase activity. The aim of this work was to elucidate whether an increase in both carbon flux and activity of enzymes of carbon metabolism in nodules may lead to an increased nitrogen fixation. We report the effects caused by a continuous exposure to atmospheric CO2 enrichment in nodulated pea plants. CO2 enrichment led to an enhanced whole-plant growth and increased nodule biomass. Moreover, nodules of plants grown at increased CO2 showed a higher sugar content as well as enhancement of some activities related to nodule carbon metabolism, such as sucrose synthase, UDP glucose pyrophosphorylase and phosphoenolpyruvate carboxylase. Indeed, acetylene reduction activity, measured by the classical technique, was increased more than four times. However, when specific nitrogen fixation was determined as hydrogen evolution, no significant differences were detected, consistent with the lack of changes of enzymes involved in nitrogen metabolism such as glutamate synthase and aspartate aminotransferase. These results are discussed in the context of the regulation of nitrogen fixation and nodule metabolism.  相似文献   

10.
Biological dinitrogen fixation, the reduction of N2 to NH3, requires the enzyme nitrogenase, MgATP, a strongly reducing electron donor and an anaerobic environment. Reducing power for nitrogen fixation is generated by two particular mechanisms, while the mechanisms for protecting nitrogen fixation from oxygen show a greater diversity. Both the reduction and the protection aspects of nitrogen fixation, especially those of the legume root nodule, will be discussed.  相似文献   

11.
12.
Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.  相似文献   

13.
Pyruvate metabolism by a nitrogen-fixing bacterium   总被引:2,自引:0,他引:2       下载免费PDF全文
1. The major products of pyruvate dissimilation by washed intact cells of Achromobacter N4-B under nitrogen-fixing conditions are acetate and formate. The formation of succinate and isocitrate and the assimilated amino acids requires carbon dioxide fixation. 2. The products formed by cells incubated with pyruvate in an atmosphere of nitrogen were compared with those formed by cells incubated in an atmosphere of helium. Production of hydrogen and the formation of succinate were greater under helium than under nitrogen. Production of acetate and formate and the utilization of pyruvate were the same in both atmospheres. 3. Cell-free preparations, unlike intact cells of Achromobacter N4-B, do not evolve hydrogen, but do produce lactate. 4. It is suggested that, in cell-free preparations incapable of fixing nitrogen, electrons are accepted from pyruvate to form lactate rather than being used for the reductive formation of ammonia and hydrogen.  相似文献   

14.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

15.
Drought stress is one of the major factors affecting nitrogen fixation by legume-rhizobium symbiosis. Several mechanisms have been previously reported to be involved in the physiological response of symbiotic nitrogen fixation to drought stress, i.e. carbon shortage and nodule carbon metabolism, oxygen limitation, and feedback regulation by the accumulation of N fixation products. The carbon shortage hypothesis was previously investigated by studying the combined effects of CO2 enrichment and water deficits on nodulation and N2 fixation in soybean. Under drought, in a genotype with drought tolerant N2 fixation, approximately four times the amount of 14C was allocated to nodules compared to a drought sensitive genotype. It was found that an important effect of CO2 enrichment of soybean under drought was an enhancement of photo assimilation, an increased partitioning of carbon to nodules, whose main effect was to sustain nodule growth, which helped sustain N2 rates under soil water deficits. The interaction of nodule permeability to O2 and drought stress with N2 fixation was examined in soybean nodules and led to the overall conclusion that O2 limitation seems to be involved only in the initial stages of water deficit stresses in decreasing nodule activity. The involvement of ureides in the drought response of N2 fixation was initially suspected by an increased ureide concentration in shoots and nodules under drought leading to a negative feedback response between ureides and nodule activity. Direct evidence for inhibition of nitrogenase activity by its products, ureides and amides, supported this hypothesis. The overall conclusion was that all three physiological mechanisms are important in understanding the regulation of N2 fixation and its response of to soil drying.  相似文献   

16.
Freshly prepared washed or purified mung-bean (Phaseolus aureus) mitochondria utilize oxygen with ascorbate/tetramethyl-p-phenylenediamine mixture as electron donor in the presence of KCN. ATP control of the oxygen uptake can be observed with very fresh mitochondria. The electron flow, which is inhibited by antimycin A, salicylhydroxamic acid or octylguanidine, takes place by reversed electron transport through phosphorylation site II and thence to oxygen through the cyanide-insensitive pathway. Oligomycin and low concentrations of uncoupler partially inhibit the oxygen uptake in a manner similar to that observed for other energy-linked functions of plant mitochondria. An antimycin A-insensitive oxygen uptake occurs if high concentrations of uncoupler are used, indicating that the pathway of electron flow has been altered. The process of cyanide-insensitive ascorbate oxidation is self-starting, and, since it occurs in the presence of oligomycin, it is concluded that the reaction can be energized by a single energy-conservation site associated with the cyanide-insensitive oxidase pathway.  相似文献   

17.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

18.
Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.  相似文献   

19.
Nitrogen fixation in legumes is dramatically inhibited by abiotic stresses, and this reduction is often associated with oxidative damage. Although ascorbate (ASC) has been firmly associated with antioxidant defence, recent studies have suggested that the functions of ASC are related primarily to developmental processes. This study examines the hypothesis that ASC is involved in alleviating the oxidative damage to nodules caused by an increase in reactive oxygen species (ROS) under water stress. The hypothesis was tested by supplying 5 mM ASC to pea plants (Pisum sativum L.) experiencing moderate water stress (ca. −1 MPa) and monitoring plant responses in relation to those experiencing the same water stress without ASC. A supply of exogenous ASC increased the nodule ASC+dehydroascorbate (DHA) pool compared to water-stressed nodules without ASC, and significantly modulated the response to water stress of the unspecific guaiacol peroxidase (EC 1.11.1.7) in leaves and nodules. However, ASC supply did not produce recovery from water stress in other nodule antioxidant enzymes, nodule carbon and nitrogen enzymes, or nitrogen fixation. The supply of the immediate ASC precursor, galactono-1,4-lactone (GL), increased the nodule ASC+DHA pool, but also failed to prevent the decline of nitrogen fixation and the reduction of carbon flux in nodules. These results suggest that ASC has a limited role in preventing the negative effects of water stress on nodule metabolism and nitrogen fixation.  相似文献   

20.
Hydrogen evolution from a nitrogenase-catalyzed reaction in nodules has been proposed as one of the main causes of inefficiency in theRhizobium-legume symbiosis. We have evaluated the energy efficiency of the nitrogen fixation by chickpeas as affected by specific strains ofRhizobium. All seventeen strains tested produced nodules that evolved amounts of hydrogen ranging from 2.4 to 7.5 μmol/h×g fresh nodule weight. The equivalent energy losses represented from 31% to 58% of the nitrogenase activity estimated as acetylene reduction. No hydrogen uptake hydrogenase activity was detected in any of the bacteroid suspensions from nodules produced by the strains examined. The need to select strains of chickpea rhizobia with higher energy efficiency to improve productivity is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号