首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of pentoxifylline (PTX) on spontaneous pseudopod formation in neutrophils in response to the tripeptide formyl-Met-Leu-Phe (fMLP), endotoxin, human complement C5a, and leukotriene B4 (LTB4) were examined in autologous plasma. Unseparated supernatant leukocyte suspensions from fresh heparinized venous human blood were incubated with PTX (0-5 mM) for 25 min and then stimulated for 5–25 min within a range of concentrations of fMLP, endotoxin, complement C5a, and LTB4. The cell suspensions were fixed with glutaraldehyde and stained with crystal violet in acetic acid; the percentage of neutrophils with pseudopods was determined under high-resolution light microscope. The results show that PTX significantly decreases formation of pseudopods in the presence of all four stimulators. The mechanism of pseudopod suppression appears to be independent of the adenosine receptor. PTX and its analogues, HWA 138 and HWA 448, decreased pseudopod formation by similar amounts when stimulated with 10−8M fMLP. These results suggest that PTX may improve microvascular perfusion and attenuate neutrophilmediated injury by reducing the degree of neutrophil pseudopod formation in free suspension and microvascular entrapment.  相似文献   

2.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

3.
The formation of pseudopods and lamellae after ligation of chemoattractant sensitive G-protein coupled receptors (GPCRs) is essential for chemotaxis. Here, pseudopod extension was stimulated with chemoattractant delivered from a micropipet. The chemoattractant diffusion and convection mass transport were considered, and it is shown that when the delivery of chemoattractant was limited by diffusion there was a strong chemoattractant gradient along the cell surface. The diffusion-limited delivery of chemoattractant from a micropipet allowed for maintaining an almost constant chemoattractant concentration at the leading edge of single pseudopods during their growth. In these conditions, the rate of pseudopod extension was dependent on the concentration of chemoattractant in the pipet delivering chemoattractant. The pseudopod extension induced using micropipets was oscillatory even in the presence of a constant delivery of chemoattractant. This oscillatory pseudopod extension was controlled by activated RhoA and its downstream effector kinase ROCK and was abolished after the inhibition of RhoA activation with Clostridium botulinium C3 exoenzyme (C3) or the blocking of ROCK activation with Y-27632. The ability of the micropipet assay to establish a well-defined chemoattractant distribution around the activated cell over a wide range of molecular weights of the used chemoattractants allowed for comparison of the effect of chemoattractant stimulation on the dynamics of pseudopod growth. Pseudopod growth was stimulated using N-formylated peptide (N-formyl-methionyl-leucyl-phenylalanine (fMLP)), platelet activating factor (PAF), leukotriene B4 (LTB(4)), C5a anaphylotoxin (C5a), and interleukin-8 (IL-8), which represent the typical ligands for G-protein coupled chemotactic receptors. The dependence of the rate of pseudopod extension on the concentration of these chemoattractants and their equimolar mixture was measured and shown to be similar for all chemoattractants. The inhibition of the activity of phosphoinositide-3 kinase (PI3K) with wortmannin showed that 72%-80% of the rate of pseudopod extension induced with N-formyl-methionyl-leucyl-phenylalanine, platelet activating factor, and leukotriene B4 was phosphoinositide-3 kinase-dependent, in contrast to 55% of the rate of pseudopod extension induced with interleukin-8. The dependence of the rate of pseudopod extension on the concentration of individual chemoattractants and their equimolar mixture suggests that there is a common rate-limiting mechanism for the polymerization of cytoskeletal F-actin in the pseudopod region induced by G-protein coupled chemoattractant receptors.  相似文献   

4.
The application of fluid shear stress on leukocytes is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. The formyl peptide receptor (FPR) on neutrophils, which binds to formyl-methionyl-leucyl-phenylalanine (fMLP) and plays a role in neutrophil chemotaxis, has been implicated as a fluid shear stress sensor that controls pseudopod formation. The role of shear forces on earlier indicators of neutrophil activation, such as L-selectin shedding and α(M)β(2) integrin activation, remains unclear. Here, human neutrophils exposed to uniform shear stress (0.1-4.0 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min showed a significant reduction in both α(M)β(2) integrin activation and L-selectin shedding after stimulation with 0.5 nM of fMLP. Neutrophil resistance to activation was directly linked to fluid shear stress, as the response increased in a shear stress force- and time-dependent manner. Significant shear-induced loss of FPR surface expression on neutrophils was observed, and high-resolution confocal microscopy revealed FPR internalized within neutrophils. These results suggest that physiological shear forces alter neutrophil activation via FPR by reducing L-selectin shedding and α(M)β(2) integrin activation in the presence of soluble ligand.  相似文献   

5.
Peripheral blood polymorphonuclear leukocytes (PMNL) isolated from rabbits after an i.v. injection of endotoxin exhibited decreased chemotactic migration in response to leukotriene B4 (LTB4) and C5a, but not N-formyl-methionyl-leucyl-phenylalanine (fMLP), after endotoxin treatment. The binding of radiolabeled LTB4, fMLP, and C5a to isolated PMNL was assessed in order to determine whether altered receptor expression could account for the observed functional changes. Control PMNL expressed binding sites for fMLP, LTB4, and C5a similar to those previously characterized from human PMNL. Control PMNL expressed a single class of 14,600 +/- 2700 receptors for fMLP with a mean dissociation constant (Kd) of 2.0 +/- 0.6 nM at 0 degrees C, whereas two subclasses of binding sites were expressed for LTB4: 10,300 +/- 6800 high-affinity and 85,600 +/- 53,000 low-affinity binding sites per PMNL with mean Kd for LTB4 of 0.75 +/- 0.43 nM and 70 +/- 58 nM (mean +/- SD, n = 5), respectively. Control PMNL bound [125I]-C5a in a dose-dependent and saturable manner at 24 degrees C. At saturating concentrations of C5a, PMNL obtained from control rabbits bound 270,000 +/- 50,000 molecules of [125I]-C5a with half-maximal binding occurring at [125I]-C5a concentrations of 5.5 +/- 1.9 nM. The binding of LTB4 and C5a to PMNL obtained 24 hr after an i.v. injection of endotoxin was markedly decreased compared with control PMNL. PMNL from endotoxin-treated rabbits exhibited 68% fewer high-affinity binding sites per PMNL for LTB4 and a 51% decrease in the amount of [125I]-C5a bound at saturating concentrations compared with control PMNL. There was no significant change in the Kd of the high-affinity binding sites for LTB4, no change in the Kd and number of the low-affinity binding sites for LTB4, and a small decrease in the apparent Kd for C5a to 3.3 +/- 1.1 nM. Even though the pretreatment with i.v. endotoxin did not alter chemotactic or degranulation responses elicited by fMLP, the endotoxin pretreatment induced an eightfold increase in the receptor density without altering the Kd for fMLP. Decreased receptor expression could account in large part for the decreased chemotactic responsiveness towards C5a and LTB4 induced by LPS. The finding that a substantial increase in receptors for fMLP need not be accompanied by a comparable functional change suggests that decreased efficiency in receptor coupling to intracellular biochemical events may also result from i.v. endotoxin.  相似文献   

6.
The effect of 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin I1 (Piriprost) on the oxidative response was studied in human neutrophils stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol 12-myristate, 13-acetate (PMA) or opsonized zymosan. Piriprost inhibited the stimulatory effect of fMLP on superoxide anion (O2-) generation, at concentrations higher than those which depress leukotriene B4 (LTB4) formation. This inhibition was overcome by increasing the concentration of fMLP. Neither exogenous LTB4 nor indomethacin were able to reverse the inhibitory effect of piriprost on fMLP action. In contrast, piriprost did not inhibit the stimulation of O2- production induced by PMA or zymosan. Piriprost behaves thus as a specific and apparently competitive antagonist of fMLP: this action does not seem to involve lipoxygenase inhibition and might be exerted at the level of the fMLP receptor or its associated mechanisms of transduction.  相似文献   

7.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

8.
We have characterized the GTPase activity of the Ni-like guanine-nucleotide-binding regulatory protein in rabbit neutrophil plasma membranes. The low Km (3.64 +/- 0.87 X 10(-7) M) GTPase copurified with the formyl peptide receptor in the plasma membrane fraction obtained by discontinuous sucrose density gradient centrifugation. The Vmax (23.9 +/- 2.91 pmol/mg/min) and Km of the unstimulated enzyme were similar to those reported for Ni in other cell types. The activity of the unstimulated enzyme was both magnesium and sodium dependent and linear over the first 4 min of the assay. The chemoattractants, formyl-methionyl-leucyl-phenylalanine (fMLP), C5a, and leukotriene B4 (LTB4) stimulated the GTPase in purified neutrophil plasma membrane preparations, whereas other secretagogues, such as A23187 and PMA, were without effect. Lineweaver-Burk analysis showed an fMLP-induced increase in Vmax (31.94 +/- 4.80 pmol/mg/min) (33.1 +/- 9.5%) but not in Km. The dose-response curve for fMLP stimulation showed an ED50 of 4.1 +/- 1.0 X 10(-8) M and an overall 22.2 +/- 3.1% maximal stimulation. C5a (30 micrograms/ml) increased the activity of the GTPase 21.3 +/- 5.7% and 10(-7) M LTB4 produced a 32.2 +/- 5.4% increase. Activated pertussis toxin treatment of neutrophil plasma membranes inhibited by 72.5 +/- 14.3% the stimulation of GTPase activity induced by fMLP; however, activated cholera toxin had no effect on the inhibition of fMLP stimulation, suggesting a direct role for an Ni-like protein in the coupling process. In contrast to the lack of inhibition of fMLP stimulation by activated cholera toxin treatment of plasma membranes, both pertussis toxin and to a lesser extent cholera toxin treatment reduced fMLP, C5a, and LTB4 stimulation of the GTPase in sonicates prepared from pretreated whole cells. Pertussis toxin inhibited fMLP stimulation of the GTPase by 75 +/- 7%, C5a stimulation was inhibited by 83 +/- 13%, and LTB4 stimulation was inhibited completely. Sonicates prepared from neutrophils treated similarly with cholera toxin showed a smaller inhibition of GTPase activity (50 +/- 4% and 14 +/- 9% for fMLP and LTB4, respectively) with the exception of C5a, where CT inhibition (81 +/- 32%) equaled pertussis toxin inhibition. Similarly, pertussis toxin completely inhibited the release of the granule enzyme N-acetyl-glucosaminidase by all three chemoattractants, whereas cholera toxin, except with C5a stimulation, had little or no effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
By using human neutrophils we studied the on-off phenomenon for leukotriene B4 (LTB4) -induced functional responses compared with fMetLeuPhe (fMLP). LTB4 induced rapidly appearing and disappearing neutrophil chemiluminescent (CL), superoxide anion formation, aggregatory and membrane depolarizing responses, whereas fMLP responses were slower both in onset and termination. Increases of intracellular calcium concentrations (as reflected by quin2 and fura-2 fluorescence) were of similar magnitude for both stimuli; however, LTB4 responses were more rapidly terminated and fMLP responses were biphasic. When intracellular calcium fluxes, calmodulin or protein kinase C activities were inhibited by quin2, trifluoperazine, verapamil or 3,4,5-trimethoxybenzoic acid 8-diethylamino)octyl ester (TMB-8), profound changes were noted for chemiluminescent and aggregation kinetics induced by fMLP, whereas kinetics of LTB4 responses were less affected. When drugs were used to modulate cAMP levels, or to inhibit cyclo- and lipoxygenase metabolites of arachidonic acid, no effects on response kinetics were observed. Cytochalasin B both amplified and delayed responses although chemiluminescent responses to fMLP were amplified more than those to LTB4. Despite those effects cytochalasin B did not enhance peak fura-2 or quin2 responses to either fMLP or LTB4. Thus, LTB4 rapidly initiates functional responses in neutrophils, and stimulus-specific response patterns are already discernable during the mobilization of calcium, and can be modulated by interference with calcium-dependent reactions.  相似文献   

10.
Orientation of nucleus, centriole, microtubules, and microfilaments within human neutrophils in a gradient of chemoattractant (5 percent Escherichia coli endotoxin-activated serum) was evaluated by electron microscopy. Purified neutropils (hypaque-Ficoll) were placed in the upper compartment of chemotactic chambers. Use of small pore (0.45 μm) micropore filters permitted pseudopod penetration, but impeded migration. Under conditions of chemotaxis with activated serum beneath the filter, the neutrophil population oriented at the filter surface with nuclei located away from the stimulus, centrioles and associated radial array of microtubules beneath the nuclei, and microfilament-rich pseudopods penetrating the filter pores. Reversal of the direction of the gradient of the stimulus (activated serum above cells) resulted in a reorientation of internal structure which preceded pseudopod formation toward the activated serum and migration off the filter. Coordinated orientation of the entire neutrophil population did not occur in buffer (random migration) or in a uniform concentration of activated serum (activated random migration). Conditions of activated random migration resulted in increased numbers of cells with locomotory morphology, i.e. cellular asymmetry with linear alignment of nucleus, centriole, microtubule array, and pseudopods. Thus, activated serum increased the number of neutrophils exhibiting locomotory morphology, and a gradient of activated serum induced the alignment of neutrophils such that this locomotory morphology was uniform in the observed neutrophil populayion. In related studies, cytochalasin B and colchicines were used to explore the role of microfilaments and microtubules in the neutrophil orientation and migration response to activated serum. Cytochalasin B (3.0 μg/ml) prevented migration and decreased the microfilaments seen, but allowed normal orientation of neutrophil structures. In an activated serum gradient, colchicines, but not lumicolchicine, decreased the orientation of nuclei and centrioles, and caused a decrease in centriole-associated microtubules in concentrations as low as 10(-8) to 10(-7) M. These colchicines effects were associated with the rounding of cells and impairment of pseudopod formation. The impaired pseudopod formation was characterized by an inability to form pseudopods in the absence of a solid substrate, a formation of narrow pseudopods within a substrate, and a defect in pseudopod orientation in an activated serum gradient. Functional studies of migration showed that colchicines, but not lumicolchicine, minimally decreased activated random migration and markedly inhibited directed migration, but had not effect on random migration. These studies show that, although functioning microfilaments are probably necessary for neutrophil migration, intact microtubules are essential for normal pseudopod formation and orientation, and maximal unidirectional migration during chemotaxis.  相似文献   

11.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

12.
Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.  相似文献   

13.
Neutrophilic polymorphonuclear leukocytes contain glycosphingolipid- and cholesterol-enriched lipid raft microdomains within the plasma membrane. Although there is evidence that lipid rafts function as signaling platforms for CXCR chemokine receptors, their role in recognition systems for other chemotaxins such as leukotriene B4 (LTB4) and fMLP is unknown. To address this question, human neutrophils were extracted with 1% Brij-58 and fractionated on sucrose gradients. B leukotriene receptor-1 (BLT-1), the primary LTB4 receptor, partitioned to low density fractions, co-isolating with the lipid raft marker, flotillin-1. By contrast, formyl peptide receptor (FPR), the primary fMLP receptor, partitioned to high density fractions, co-isolating with a non-raft marker, Cdc42. This pattern was preserved after the cells were stimulated with LTB4 or fMLP. Fluorescence resonance energy transfer (FRET) was performed to confirm the proximity of BLT-1 and FPR with these markers. FRET was detected between BLT1 and flotillin-1 but not Cdc42, whereas FRET was detected between FPR and Cdc42, but not flotillin-1. Pretreating neutrophils with methyl-beta-cyclodextrin, a lipid raft-disrupting agent, suppressed intracellular Ca(2+) mobilization and ERK1/2 phosphorylation in response to LTB4 but had no effect on either of these responses to fMLP. We conclude that BLT-1 is physically located within lipid raft microdomains of human neutrophils and that disrupting lipid raft integrity suppresses LTB4-induced activation. By contrast, FPR is not associated with lipid rafts, and fMLP-induced signaling does not require lipid raft integrity. These findings highlight the complexity of chemotaxin signaling pathways and offer one mechanism by which neutrophils may spatially organize chemotaxin signaling within the plasma membrane.  相似文献   

14.
Protein I, the major outer membrane protein of Neisseria gonorrhoeae, is a voltage-dependent anion channel which can translocate from the gonococcus into human cells. Since granule exocytosis from neutrophils is regulated by ion fluxes, we examined the effect of protein I on neutrophil activation. Pretreatment with protein I (250 nM) impaired degranulation from neutrophils: beta-glucuronidase release decreased to 27 +/- 6% S.E. of cells treated with N-f-Met-Leu-Phe (fMLP, 0.1 microM) and to 13 +/- 4% of cells treated with leukotriene B4 (LTB4, 0.1 microM); lysozyme release decreased to 52 +/- 17% of fMLP-treated cells and 22 +/- 9% of LTB4-treated cells. Morphometric analysis was consistent: control neutrophils increased their surface membrane after fMLP (43.3 +/- 5.6 microns relative perimeter versus 71.4 +/- 3.7 microns) while protein I-treated neutrophils did not (29.4 +/- 2 (S.E.) microns relative perimeter versus 34 +/- 4 microns). Enzyme release after exposure to phorbol myristate acetate was not affected (lysozyme: 86 +/- 27% of control). Cell/cell aggregation in response to fMLP was inhibited by treatment with protein I. However, generation of O2 was not affected. Protein I altered the surface membrane potential (Oxonol V): protein I evoked a transient membrane hyperpolarization which was not inhibited by furosemide. After exposure to fMLP, protein I-treated neutrophils underwent a furosemide-sensitive hyperpolarization rather than the usual depolarization. Protein I did not alter increments in [Ca]i (Fura-2) stimulated by fMLP (460 +/- 99 nM (S.E.) versus 377 +/- 44 nM) nor decrements in [pH]i (7.22 +/- 0.04 S.E. versus 7.22 +/- 0.02, bis-(carboxy-ethyl)carboxyfluorescein). The results suggest that degranulation and O2 generation have separate ionic requirements and that protein I interrupts the activation sequence proximal to activation of protein kinase C.  相似文献   

15.
We have investigated the inhibitory activity of compound MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-i ndol-2- yl]-2,2-dimethyl propanoic acid) on 5-lipoxygenase (5-LO) product synthesis in various human phagocytes stimulated with either the ionophore A23187, opsonized zymosan (OPZ), platelet-activating factor (PAF), or formyl-methionyl-leucyl-phenylalanine (fMLP). The lipoxygenase products were analyzed by reversed-phase HPLC. MK-0591 inhibited the formation of 5-hydroxyeicosatetraenoic acid, leukotriene (LT) B4, its omega-oxidation products, and 6-trans-isomers with IC50 values of 2.8-4.8 nM in A23187-stimulated neutrophils. In these conditions, arachidonic acid at a concentration of 10 microM had no effect on MK-0591 inhibitory activity. In neutrophils stimulated with OPZ, the synthesis of LTB4, its omega-oxidation products, and 6-trans-isomers was inhibited with IC50 values of 9.5-11.0 nM. MK-0591 inhibited 5-LO product synthesis in A23187-stimulated blood monocytes, eosinophils, and alveolar macrophages with IC50 values of 0.3-0.9, 3.7-5.3, and 8.5-17.3 nM, respectively. In neutrophils primed with granulocyte--macrophage colony-stimulating factor and stimulated with PAF, lipoxygenase product synthesis was inhibited with IC50 values of 7.7-8.7 nM. At the concentration of 1 microM, MK-0591 had no inhibitory effect on 15-lipoxygenase activity in human polymorphonuclear leukocytes, nor on human platelet 12-lipoxygenase and cyclooxygenase. In conclusion, MK-0591 is a very potent and specific inhibitor of 5-LO product synthesis in various types of human phagocytes.  相似文献   

16.
SC-41930 was evaluated for effects on human neutrophil chemotaxis and degranulation. At concentrations up to 100 microM, SC-41930 alone exhibited no effect on neutrophil migration, but dose-dependently inhibited neutrophil chemotaxis induced by leukotriene B4 (LTB4) in a modified Boyden chamber. Concentrations of SC-41930 from 0.3 microM to 3 microM competitively inhibited LTB4-induced chemotaxis with a pA2 value of 6.35. While inactive at 10 microM against C5a-induced chemotaxis, SC-41930 inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, with 10 times less potency than against LTB4-induced chemotaxis. SC-41930 inhibited [3H]LTB4 and [3H]fMLP binding to their receptor sites on human neutrophils with KD values of 0.2 microM and 2 microM, respectively. SC-41930 also inhibited neutrophil chemotaxis induced by 20-OH LTB or 12(R)-HETE. At concentrations up to 10 microM, SC-41930 alone did not cause neutrophil degranulation, but inhibited LTB4-induced degranulation in a noncompetitive manner. SC-41930 also inhibited fMLP- or C5a-induced degranulation, but was about 8 and 10 times less effective for fMLP and C5a, respectively. The results indicate that SC-41930 is a human neutrophil LTB4 receptor antagonist with greater specificity for LTB4 than for fMLP or C5a receptors.  相似文献   

17.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

18.
Neutrophils which ingest particles (serum-treated zymosan, monosodium urate crystals) or are exposed to calcium ionophore A23187 generate leukotriene B4 (LTB4). Earlier work has shown that cells exposed to colchicine before exposure to monosodium urate crystals produce less LTB4; the formation of 5-HETE is unaffected. To determine whether inhibition by colchicine of LTB4 generation was stimulus-specific and was mediated by microtubule integrity, the effects of colchicine (10 microM, 60 min) on the release of lipoxygenase products from neutrophils exposed to ionophore A23187 (10 microM, 5 min) were examined. In the presence of exogenous arachidonic acid (100 microM, 15 min), colchicine decreased LTB4 to 48% +/- 11.7 of control and 5-HETE to 60.5% +/- 5.7 of control (mean +/- SEM); 15-HETE was also decreased to 61% +/- 10.3 of control. In the absence of exogenous arachidonate, LTB4 was decreased to 22.2% +/- 11.7 of control and 5-HETE to 13% +/- 4.8 of control. Lumicolchicine did not significantly affect formation of 5-HETE or LTB4. However, vinblastine sulfate (20 microM, 60 min), another microtubule-disruptive agent, decreased the formation of both 5-lipoxygenase products. The effects of colchicine and vinblastine were not due to impairment of cell viability because the release of cytoplasmic lactic dehydrogenase was unaffected. Ultrastructural analysis of centriolar microtubules showed that decrements in microtubule numbers of colchicine- and vinblastine-treated cells paralleled decrements in 5-lipoxygenase products. These pharmacologic manipulations suggested that functional microtubules might be required for optimal lipoxygenase activity. Consequently, we prepared neutrophil-derived cytoplasts, devoid of an intact microtubule system. No significant decreases in the 5- or 15-lipoxygenase products were found when cytoplasts were exposed to colchicine in the presence of exogenous arachidonate and A23187. The data show that colchicine inhibits the formation of lipoxygenase products from neutrophils stimulated with A23187, most likely via its effect on microtubules, the integrity of which appears necessary for full expression of 5- and 15-lipoxygenases.  相似文献   

19.
We examined the role of circulating granulocytes in the pulmonary microvascular response to leukotriene B4 (LTB4) by prior depletion of circulating granulocytes using hydroxyurea. LTB4 (2 micrograms/kg injection followed by infusion of 2 micrograms/kg over 15 min) produced transient increases in pulmonary arterial pressure and pulmonary vascular resistance, indicating that neutrophils were not required for the pulmonary hemodynamic effects of LTB4. Infusion of LTB4 in granulocyte-depleted sheep also resulted in transient increases in pulmonary lymph flow (QL) with no significant change in the lymph-to-plasma protein concentration ratio (L/P), findings similar to those in control animals. In vitro studies indicated that LTB4 (10(-7) or 10(-9) M) produced a transient adherence of neutrophils to cultured pulmonary artery endothelial monolayers. Maximal responses occurred at 10 min after the addition of LTB4 to the endothelial cell-neutrophil coculture system, and the adherence decreased to base line within 60 min. LTB4 infusion in sheep also produced a transient uptake of autologous 111In-oxine-labeled neutrophils. The results indicate that LTB4-mediated increase in pulmonary transvascular protein clearance (QL x L/P) is independent of circulating granulocytes.  相似文献   

20.
The purpose of this study was to examine the role of circulating neutrophils in endotoxin-induced increase in microvascular permeability in vivo. Fifteen hamsters were anesthetized, and a plastic chamber was placed in each cheek pouch to observe the microvasculature. Fluorescein-labeled dextran (FITC-D, 150 kDa) was injected intravenously, and changes in leaky sites and FITC-D clearance were measured in three groups: control (saline, n = 4), endotoxin suffusion (n = 6), and endotoxin suffusion after neutropenia induction (n = 5). We found a significant increase in leaky sites and FITC-D clearance with endotoxin (45 +/- 18/cm2 and 20 +/- 6 x 10(-6) ml/min, respectively; mean +/- SD, P less than 0.05) in comparison to control (7 +/- 6/cm2 and 7 +/- 5 x 10(-6) ml/min) and endotoxin suffusion in neutropenic animals (19 +/- 11/cm2 and 12 +/- 4 x 10(-6) ml/min). There was a significant correlation between the number of leaky sites and FITC-D clearance (r = 0.91, P less than 0.01) and between the number of circulating neutrophils and FITC-D clearance (r = 0.87, P less than 0.01). We conclude that endotoxin-mediated increase in microvascular permeability in the peripheral circulation is dependent in part on circulating neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号