首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。  相似文献   

2.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

3.
The organic solvents methanol and ethanol at concentrations of 2.5% and 5% (v/v), respectively, were found to significantly (P < 0.001) decrease the radius of curvature and track velocity of S. commercialis sperm. To observe the effects of the solvent directly on the axoneme, S. commercialis sperm models were prepared by extraction with Triton X-100 and reactivation with ATP in media containing acetate anions, DTT, magnesium, and cAMP. Concentrations of 0.1% Triton X-100 demembranated sperm while 0.01% and 0.05% Triton X-100 permeabilized sperm. Sperm models were successfully produced after reactivation with 1 mM ATP. At pH 8.25, 1% (v/v) ethanol or methanol was observed to increase waveform asymmetry and significantly (P < 0.001) decrease track velocity of 0.1% Triton X-100 demembranated sperm models. Similarly 1% (v/v) ethanol increased tailwave asymmetry and decreased track velocity of 0.01% and 0.05% Triton X-100 permeabilized sperm models. Reactivated motility of 0.05% Triton X-100 permeabilized sperm models prepared at pH 7.8 were poor and improved after treatment with 7% (v/v) ethanol, which increased waveform asymmetry and doubled the track velocity of sperm. This stimulatory effect of ethanol was unchanged in the presence of the alcohol dehydrogenase inhibitor pyrazole. Concerning the precise mechanism of action of ethanol on the axoneme, we conclude that a stimulatory or inhibitory effect of ethanol is dependent on the pH of the sperm model system used.  相似文献   

4.
The effect of acidosis and alkalosis on lipolysis, cAMP production and cAMP-dependent protein kinase activity in isolated rat fat cells incubated in the presence of norepinephrine and norepinephrine plus theophylline has been investigated. The pH of the incubation medium was adjusted to 6.8, 7.4 and 7.8 respectively. Acidosis inhibited both norepinephrine- and norepinephrine plus theophylline-induced release of glycerol whereas alkalosis led to slight stimulation. Norepinephrine produced an increase in cAMP and cAMP-dependent protein kinase activity. However, comparison of both parameters in acidosis and alkalosis with those at pH 7.4 indicates that they were higher at pH 7.8 and lower at pH 6.8. Addition of theophylline in combination with norepinephrine increases cAMP production within 5 min, under acidosis to values similar to those obtained at pH 7.4 with norepinephrine. The same effect on protein kinase activity was obtained. In spite of this increment in cAMP and protein kinase activity produced by addition of norepinephrine plus theophylline, lipolysis remains inhibited by acidosis. Addition of theophylline at pH 7.4 and 7.8 induced a much higher cAMP production and cAMP-dependent protein kinase activity although at pH 7.8 there was a statistically significant increase in protein kinase activity at 10 min it did not induce a significant increase in lipolysis. This is discussed and possible mechanisms are suggested to explain the effect of acidosis and alkalosis on the lipolysis induced by norepinephrine in rat fat cells.  相似文献   

5.
The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0–7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells. J. Cell. Biochem. 68:83–89, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Oxygen uptake during a 4-h incubation period at 37 degrees C, and the motility of the spermatozoa before and after incubation, increased significantly with increasing pH from 6.3 to 8.8. No interaction between buffer and pH was noticed. In a second series of experiments on the aerobic metabolism of turkey spermatozoa, the effect of the pHs 6.8, 7.3 and 7.8 was studied. Fructose was formed from glucose without regard to the pH of the medium. The glucose consumption, i.e. the glucose disappearance minus fructose formation, the lactic acid accumulation, and the oxidation of glucose and of other substances, were higher, although not always statistically, at pH 7.8 than at pH 6.8. The percentage of fertile eggs during the 3rd week of collection after insemination with fresh semen diluted in the pH 7.8 medium was significantly lower than that with semen diluted in the pH 6.8 or 7.3 media. After 4 h of storage at 15 degrees C, the decrease in the fertility of spermatozoa in the high pH medium was apparent from the 1st week of collection.  相似文献   

7.
The role of cell density and pH on calcium influx was studied in normal and endotoxin-challenged cultured 3T6 fibroblasts. In normal fibroblasts, at low cell densities, there was no marked difference in calcium influx at pH 6.6, 7.4, and 7.8, whereas at high cell densities, the calcium influx was markedly higher at pH 6.6 as compared to that at pH 7.8. Endotoxin treatment for 4 hr at low cell density and in alkaline pH (7.4-7.8) increased calcium influx in a dose-dependent manner. In contrast, at high cell density and low pH (6.6), endotoxin treatment markedly decreased calcium influx in a dose- and time-dependent manner. These endotoxin-induced changes in calcium influx were not fully compensated by altered calcium efflux because total calcium content of the cells was found to be altered. The efficacy of the endotoxin varied depending on the bacterial source of the endotoxin and the method of purification. There was a relationship between the effect of different endotoxins on the increase in calcium influx and the inhibition of cell proliferation. Endotoxin did not decrease, but slightly increased cell proliferation when added to high cell density cultures even at a concentration of 200 micrograms/ml.  相似文献   

8.
On the basis of the three-dimensional structure of horse liver alcohol dehydrogenase determined by X-ray crystallography, His 51 has been proposed to act as a general base during catalysis by abstracting a proton from the alcohol substrate. A hydrogen-bonding system (proton relay system) connecting the alcohol substrate and His 51 has been proposed to mediate proton transfer. We have mutated His 51 to Gln in the homologous human liver beta 1 beta 1 alcohol dehydrogenase isoenzyme which is expected to have a similar proton relay system. The mutation resulted in an about 6-fold drop in V/Kb (Vmax for ethanol oxidation divided by Km for ethanol) at pH 7.0 and a 12-fold drop at pH 6.5. V/Kb could be restored completely or partially by the presence of high concentrations of glycylglycine, glycine, and phosphate buffers. A Br?nsted plot of the effect on V/Kb versus the pKa of these bases plus H2O and OH- was linear. Only secondary or tertiary amine buffers differed from linearity, presumably due to steric hindrance. These results suggest that His 51 acts as a general base catalyst during alcohol oxidation in the wild-type enzyme and can be functionally replaced in the mutant enzyme by general base catalysts present in the solvent. Steady-state kinetic constants for NAD+ and the trifluoroethanol inhibition patterns were similar between the wild-type and the mutant enzyme. Differences in the inhibition constants (Ki) of caprate and trifluoroethanol below pH 7.8 and in the pH dependence of Ki can be explained by the substitution of neutral Gln for positively charged His.  相似文献   

9.
The effect of pH on the photosynthetic properties of photosystem I (PSI) particles isolated from spinach chloroplasts were studied using various spectroscopic and activity measurements. The results indicated that the PSI light energy absorption was not affected by changing pH of suspending media. The low-temperature fluorescence yield of the dominating long-wavelength emission band at 734 nm was decreased with increasing pH, whereas it did not exhibit changes in the major peak position at pHs studied except for pH 12, where the major peak in low-temperature chlorophyll (Chl) fluorescence emission spectra was shifted toward the blue light by 5 nm. Pronounced changes were found in PSI photochemical activities. Mild alkalinity (pH 8–10) in suspending media stimulated the rate of oxygen uptake with a maximum activity of oxygen consumption at about pH 9, while the other pHs exhibited an inhibition as compared to the control at pH 7.8. The rate of P700 photooxidation increased with the increasing pH, and the optimum for the reaction activity was in the region of pH 9–11. Circular dichroism spectra revealed that a progressive increase occurred in the conformation of the α-helices as pH value decreased from pH 7.8 to 3.0 or increased from pH 7.8 to 12.0. The results demonstrated that the Chl states in PSI particles were highly stable, while the photochemical activities and protein secondary structures were very sensitive to the pH stimuli of external medium.  相似文献   

10.
Comparative studies of the fermentation of cane molasses into ethanol by Saccharomyces cerevisiae in the presence or absence of fungal invertase were performed. When cane molasses was fermented by the yeast at 30°C and pH 5.0, the presence of the enzyme had no effect on ethanol production. At pH 3.5, ethanol production was increased by the addition of invertase. At 40°C, the addition of invertase increased ethanol production by 5.5% at pH 5.0 and by 20.9% at pH 3.5.  相似文献   

11.
12.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0-9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic delta pH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0-9.0.  相似文献   

13.
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with > or =30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.  相似文献   

14.
The applicability of a fluidized-bed reactor (FBR)-based sulfate reducing bioprocess was investigated for the treatment of iron-containing (40-90 mg/L) acidic wastewater at low (8 degrees C) and high (65 degrees C) temperatures. The FBRs operated at low and high temperatures were inoculated with cultures of sulfate-reducing bacteria (SRB) originally enriched from arctic and hot mining environments, respectively. Ethanol was supplemented as carbon and electron source for SRB. At 8 degrees C, ethanol oxidation and sulfate reduction rates increased steadily and reached 320 and 265 mg/L.day, respectively, after 1 month of operation. After this point, the rates did not change significantly during 130 days of operation. Despite the complete ethanol oxidation and iron precipitation, the average sulfate reduction efficiency was 35 +/- 4% between days 30 and 130 due to the accumulation of acetate. At 65 degrees C, a rapid startup was observed as 99.9, 46, and 29% ethanol, sulfate, acetate removals, in respective order, were observed after 6 days. The feed pH was decreased gradually from its initial value of 6 to around 3.7 during 100 days of operation. The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. As in the low temperature FBR, acetate accumulated. Hence, the oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic and psychrotrophic SRB. The sulfate reduction rate is three times and acetate oxidation rate is four times higher at 65 degrees C than at 8 degrees C.  相似文献   

15.
Z. Wang  J. Shen  F. Zhang 《Plant and Soil》2006,287(1-2):247-256
The study examined the interactive effect of pH and P supply on cluster-root formation, carboxylate exudation and proton release by an alkaline-tolerant lupin species (Lupinus pilosus Murr.) in nutrient solution. The plants were exposed to 1 (P1, deficient) and 50 μM P (P50, adequate) for 34 days in nutrient solution at either pH 5.6 or 7.8. Plant biomass was not influenced by pH at P1, but at P50 shoot and root dry weights were 23 and 18% higher, respectively, at pH 7.8 than at pH 5.6. There was no significant difference in plant biomass between two P treatments regardless of medium pH. Phosphorus deficiency increased significantly the number of the second-order lateral roots compared with the P50 treatment. Both total root length and specific root length of plants grown at pH 5.6 were higher than those at pH 7.8 regardless of P supply. Cluster roots were formed at P1, but cluster-root number was 2-fold higher at pH 7.8 than pH 5.6. Roots released 16 and 31% more protons at pH 5.6 and 7.8, respectively, in P1 than in P50 treatments, and the rate of proton release followed the similar pattern. At pH 5.6, citrate exudation rate was 0.39 μmol g−1 root DW h−1 at P1, but was under the detection limit at P50; at pH 7.8, it was 2.4-fold higher in P1 than in P50 plants. High pH significantly increased citrate exudation rate in comparison to pH 5.6. The uptake of anions P and S was inhibited at P1 and high pH increased cations Na, Mg and Ca uptake. The results suggested that enhanced cluster-root formation, proton release and citrate exudation may account for the mechanism of efficient P acquisition by alkaline-tolerant L. pilosus well adapted to calcareous soils. Cluster-root formation and citrate exudation in L. pilosus can be altered by medium pH and P deficiency. Phosphorus deficiency-induced proton release may be associated with the reduced anion uptake, but high pH-induced proton release may be partly attributed to increased cation uptake.  相似文献   

16.
以葡萄糖为底物,以经加热预处理并活化过的厌氧污泥为种泥,研究了初始pH值对产氢产乙酸/耗氢产乙酸两段耦合工艺厌氧发酵定向生产乙酸的影响。实验考察了7个初始pH值(5、6、7、8、9、10、11)条件下的底物降解、产物产生和发酵过程pH值的变化。结果表明:产氢产乙酸段初始pH值的变化不仅影响本阶段产酸,而且影响耗氢产乙酸段产酸。初始pH=5时主要进行乙醇型发酵;pH=6和7时主要进行丁酸型发酵;pH=8时混合酸型发酵类型逐渐占优势,pH=8~11时均以乙酸为主要产物,耦合系统生产乙酸最优初始pH值为10。在初始pH=8~11范围内,产氢产乙酸段初期的乙醇浓度一般较高,但到后期因乙醇被微生物进一步代谢转化成乙酸而使其含量下降。  相似文献   

17.
Hematoxylin, a natural dye commonly used as a histological stain, generates superoxide upon oxidation to its quinonoid product, hematein. The parameters affecting this reaction were assessed in developing a new and versatile assay for superoxide dismutase. The autoxidation of hematoxylin to hematein was accompanied by an increase in absorbance between 400 and 670 nm. The autoxidation rate was proportional to hematoxylin concentration and increased with pH above 6.55. Trace metals accelerated the autoxidation and this effect was eliminated by EDTA. Superoxide dismutase inhibited the autoxidation 90-95% below pH 7.8, but above pH 8.1 the rate was augmented by superoxide dismutase. The rate inhibition at low pH was proportional to the superoxide dismutase concentration up to 70% inhibition. The rate acceleration at high pH was proportional to superoxide dismutase concentration up to approximately 200% acceleration. The autoxidation rate was not significantly affected by ethanol, cyanide, azide, hydrogen peroxide, or catalase. However, the reaction was inhibited by the reducing agents NADH, reduced glutathione, ascorbate, and dithiothreitol, and by undialyzed extracts of Escherichia coli B. When cell extracts were dialyzed prior to assay, the degree of inhibition observed was proportional to the concentration of superoxide dismutase in the extract. These observations form the basis for negative and positive assays of superoxide dismutase which are inexpensive and simple to perform. The negative assay has the added advantage of being applicable at physiological pH.  相似文献   

18.
The secretion of insulin in response to glucose and the changes in the B cell at the ultrastructural level were studied in rat pancreas perfused at pH 7.4 and 7.8 with different concentrations of glucose. Raising the extracellular pH from 7.4 to 7.8 significantly inhibits glucose-induced insulin secretion. Coincidentally, morphometric studies showed significant evidences of low secretory activity in B cells from pancreas submitted to high glucose stimulation under alkalosis, namely lower number of emiocytotic figures and microtubules as well as a decrease in the volume density of the granular endoplasmic reticulum and the Golgi complex. On the other hand, a significant increment in the number of images of granulolysis was also demonstrated. These secretory and ultrastructural results confirm the inhibitory effect of pH 7.8 upon B cell secretory activity induced by glucose. Moreover, they lend further support to the role of intracellular hormone degradation as a regulator of B cell insulin content.  相似文献   

19.
Synaptosomes incorporated mixed brain gangliosides at a rapid initial rate followed by a slower phase of net movement from the protein-associated fraction into the membrane core. The pattern of incorporated gangliosides reflected the pattern available for incorporation. Intact synaptosomes incorporated ~100 pmol GM1/mg protein. Synaptosomes preincubated with proteolytic enzymes (trypsin, chymotrypsin, and papain) at different pH values (6.2, 7.4, 7.8) incorporated more exogenous gangliosides than synaptosomes preincubated in buffer alone. This effect was maximal at pH 7.8, though analysis of variance revealed that the proteolytic treatment and pH effects were probably independent processes. Overall uptake of exogenous gangliosides correlated significantly with amount of membrane protein loss, indicating that initial access of exogenous gangliosides to synaptosomal membranes is retarded by cell-surface proteins. These results suggest synaptosomes as a useful alternative to cultured cells for investigating the interaction of gangliosides with other cell surface constituents.  相似文献   

20.
Phospholipase D, with a molecular mass of 64 kDa, was purified from the psychrophile, Shewanella sp. The enzyme showed maximal activity at pH 7.8 and 40 degrees C in the presence of the Ca2+-ion, and its activity at 10 degrees C was 6.5% of maximum. The enzyme exhibited high activity to the non-micelle form of phosphatidylcholine in an aqueous solution containing water miscible alcohols such as methanol, ethanol, iso-propanol, and n-propanol. Nucleotide sequencing of the enzyme gene yielded a deduced amino acid sequence, which showed 36.2% identity to that of Streptomyces chromofuscus phospholipase D alone. The low sequence similarity to other phospholipase D enzymes suggests that the purified enzyme might be a novel phospholipase D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号