首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde‐3‐phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca2+. In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase‐like protein, t‐complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia‐tolerant species), there are species‐specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.  相似文献   

3.
4.
Summary Aldolase and pyruvate kinase isozymes were investigated in cultured hepatocytes from fetal, regenerating, and 2-acetyl-aminofluorene-fed rat liver as well as in some epithelial liver cell lines. Our results show that: (a) cell proliferation and prolonged expression of specific isozymes were found only in cultured hepatocytes from 17-day old fetuses; (b) the fetal type of pyruvate kinase expressed in regenerating and carcinogen-treated liver was temporarily lost only in cultured hepatocytes from regenerating liver; (c) the adult type of aldolase and pyruvate kinase was absent in one epithelial cell line derived from a carcinogen-treated liver and in the hepatoma tissue cell (HTC) line but was found in the Faza clone of the Reuber H35 cell line during the 50 first passages in vitro; and (d) the isozyme pattern of pyruvate kinase was always more strongly shifted than that of aldolase. The observations suggest that: (a) hepatocytes from carcinogen-treated liver exhibit the same lack of ability to proliferate in primary culture as normal adult hepatocytes; (b) adult hepatocytes can produce fetal isozymes without prior cell division; (c) pyruvate kinase is a stronger marker of dedifferentiation (retrodifferentiation) than aldolase; and (d) regulatory processes of isozyme expression are different during ontogenesis, regeneration, and hepatocarcinogenesis. This work was supported by the “Institut National de la Santé et de la Recherche Médicale” and the “Fondation pour la Recherche Medicale Fran?aise”  相似文献   

5.
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp.MPF activity was measured by using histone H1 as phosphorylation substrate.There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes,but there existed some subtle difference between them.The subtle difference was that the first peak of MPF kinase activity was kept to a longerlasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp.It was suggested that the difference may be related to the spindle behavior changes,such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.  相似文献   

6.
Inorganic phosphate, which increases in the hypoxic cardiac cell, depresses force development. The cardiac muscle of freshwater turtle maintains a remarkably high contractility during hypoxia; this may involve a low sensitivity to phosphate. Therefore, freshwater turtle and rainbow trout were compared with regard to Ca2+-activated force in skinned atrial trabeculae in a bath containing 3 mM ATP buffered by 15 mM creatine phosphate in the presence of creatine kinase. For turtle, an increase in phosphate from 0 mM to either 6 mM or 12 mM reduced maximal force by 50% and 80% respectively, whereas the Ca2+ activity eliciting half maximal force (Ca0.5) was increased by 70% in 6 mM and could not be reliably recorded in 12 mM. For trout, the effects of phosphate were less pronounced. An increase from 0 mM to 12 mM did not affect maximal force significantly, but elevated Ca0.5 by 70%. Hypoxia increases ADP as creatine phosphate is shifted to creatine, therefore, creatine phosphate was changed from 15 mM to 3 mM and creatine from 0 mM to 12 mM. After these changes, the elevation of phosphate from 0 mM to 12 mM had no significant effects for either turtle or trout. In conclusion, the high performance of turtle cardiac muscle during hypoxia does not involve a low sensitivity of the contractile system to phosphate. In addition, the effect of increased phosphate seems to be offset by a concomitant increase in ADP. Accepted: 28 June 1999  相似文献   

7.
The hypoxia tolerance of larval and juvenile round crucian carp, Carassius auratus grandoculis, and largemouth bass, Micropterus salmoides, was determined using respirometry to examine the potential of hypoxic areas in the macrophyte zone as physiological refugia for round crucian carp. The tolerance, which was measured as the critical oxygen concentration (Pc), was 1.32 mg O2/l in the round crucian carp and 1.93 mg O2/l in the largemouth bass. As the round crucian carp tolerated hypoxia better than the largemouth bass, hypoxic areas in the macrophyte zone might function as physiological refugia for round crucian carp.  相似文献   

8.
Hypoxia inducible factor 1 alpha (HIF-1α) initiates expression of a wide variety of genes, some of which are involved in apoptosis and cell cycle arrest. We have previously shown that crucian carp increases its respiratory surface area 7.5-fold in response to hypoxia. This change is due to apoptosis and cell cycle arrest in specific parts of its gills. Here we have characterized crucian carp HIF-1α, and measured mRNA, protein and DNA binding levels during hypoxia exposure in crucian carp gills. We have also measured an HIF-1α-induced gene, the inducible nitric oxide synthase (iNOS), which has the ability to initiate apoptosis and cell cycle arrest. Crucian carp HIF-1α was found to have all critical domains known to be important for function. Comparison of the peptide sequence with other species indicated high similarity with other cyprinid fish, but a pronounced variation compared to the salmonid, rainbow trout. Further, we found HIF-1α protein to be stabilized during hypoxia. Further, HIF-1α was often present in normoxia, and showed marked individual weight-dependent variation. We found no alteration of iNOS mRNA levels during hypoxia exposure. These findings suggest HIF-1α involvement in hypoxia-induced change of respiratory surface area in crucian carp gills. However, its activity does not seem to be mediated through iNOS.  相似文献   

9.
Summary Twitch force and resting tension of electrically stimulated ventricular strips of rainbow trout were compared with tissue contents of phosphocreatine, creatine, and ATP. The phosphocreatine/total creatine ratio, which was used to assess the cytoplasmic phosphorylation potential, fell with the fraction of cell respiration that was inhibited by sodium cyanide and N2. Concomitantly, twitch force decreased while resting tension tended to increase. This relation between phosphocreatine/total creatine and mechanical parameters became more prominent as glycolysis was increasingly inhibited by sodium iodoacetate. Furthermore, glycolytic inhibition was followed by a decrease in the ATP/phosphocreatine ratio. The latter effect was the same in 1% and 6% CO2. Thus, it cannot be ascribed to an action of intracellular pH on the creatine kinase catalyzed reaction. Notably, resting tension as well as twitch force relative to ATP was augmented by glycolytic inhibition. The main conclusions are that in the presence of a decreased mitochondrial activity, glycolysis protects contractility not only by counteracting a lowering in high energy phosphates but also by supporting the ATP/phosphocreatine ratio. Apparently, the creatine kinase activity is insufficient to maintain ATP in equilibrium with phosphocreatine. In addition, glycolysis seems to elevate the level of free phosphate relative to ATP, so that twitch force development as well as rigor complex formation is counteracted.  相似文献   

10.
1. The distribution of creatine and the creatine-synthesizing enzymes in the animal kingdom has been investigated. Creatine was found in tissues of all vertebrates examined, and in various invertebrates from phyla Annelida, Echinodermata, Hemichordata and Chordata, subphylum Cephalochordata. The activities of the creatine-synthesizing enzymes, arginine-glycine transamidinase and guanidinoacetate methylpherase, were not detected in the hagfish or in any of the invertebrates, including those in which creatine was found, with the exception that transamidinase activities were detected in the amphioxus and salt water clam; however, these activities are considered to be artifacts for reasons mentioned in the text. Additional evidence that the hagfish and various creatine-containing invertebrates could not synthesize creatine was the observation that these animals did not convert one or the other of the likely precursors of creatine (arginine and glycine) into creatine, in vivo. Further, the inability of these animals to synthesize creatine is correlated with the observations that all animals tested were able to abstract creatine from their aqueous environment. 2. The activities of the creatine-synthesizing enzymes were detected in the sea lamprey and in all but a few of the other vertebrates examined. Neither activity could be detected in the sharks and rays (cartilaginous fish), buffalo fish (bony fish) or the snapping turtle. Transamidinase or guanidinoacetate methylpherase activity could not be found in the salamander or garter snake, respectively. 3. The results obtained with the lamprey are in direct contrast with those obtained with the hagfish (both subphylum Agnatha, class Cyclostomata). The lamprey had the ability to synthesize creatine and did not abstract creatine from lake water. The hagfish did not have any apparent ability to synthesize creatine and did abstract creatine from sea water. The present report thus supports the theory that the myxinoid (hagfish) and petromyzoid (lamprey) agnathans are only distantly related. 4. The lack of creatine-synthesizing enzyme activities in the cartilaginous fishes may have phylogenetic significance, but may also be explained by the availability of creatine in the diet of these animals. The lack of one or both enzyme activities in vertebrates other than the hagfish and the cartilaginous fish is suggested to be the result of creatine in the diet.  相似文献   

11.
12.
Painted turtles hibernating during winter may endure long-term exposure to low temperature and anoxia. These two conditions may affect the aerobic capacity of a tissue and might be of particular importance to the cardiac muscle normally highly reliant on aerobic energy production. The present study addressed how hibernation affects respiratory characteristics of mitochondria in situ and the metabolic pattern of turtle myocardium. Painted turtles were acclimated to control (25 degrees C), cold (5 degrees C) normoxic and cold anoxic conditions. In saponin-skinned myocardial fibres, cold acclimation increased mitochondrial respiratory capacity and decreased apparent ADP-affinity. Concomitant anoxia did not affect this. Creatine increased the apparent ADP-affinity to similar values in the three acclimation groups, suggesting a functional coupling of creatine kinase to mitochondrial respiration. As to the metabolic pattern, cold acclimation decreased glycolytic capacity in terms of pyruvate kinase activity and increased lactate dehydrogenase (LHD) activity. Concomitant anoxia counteracted the cold-induced decrease in pyruvate kinase activity and increased creatine kinase activity. In conclusion, cold acclimation seems to increase aerobic and decrease anaerobic energy production capacity in painted turtle myocardium. Importantly, anoxia does not affect the mitochondrial functional integrity but seems to increase the capacity for anaerobic energy production and energy buffering.  相似文献   

13.
Studies of respiration on glucose in procyclic Trypanosoma congolense in the presence of rotenone, antimycin, cyanide, salicylhydroxamic acid and malonate have indicated the presence of NADH dehydrogenase, cytochrome b-c1, cytochrome aa3, trypanosome alternate oxidase and NADH fumarate reductase/succinate dehydrogenase pathway that contributes electrons to coenzyme Q of the respiratory chain. The rotenone sensitive NADH dehydrogenase, the trypanosome alternate oxidase, and cytochrome aa3 accounted for 24.5 +/- 6.5, 36.2 +/- 4.2 and 54.1 +/- 5.5% respectively of the total respiration. Activities of lactate dehydrogenase, NAD(+)-linked malic enzyme and pyruvate kinase were less than 6 nanomoles/min/mg protein suggesting that they play a minor role in energy metabolism of the parasite. Phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, succinate dehydrogenase, NADP(+)-linked malic enzyme, NADH fumarate reductase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase and glycerol kinase on the other hand had specific activities greater than 60 nanomoles/min/mg protein. These enzyme activities could account for the production of pyruvate, acetate, succinate and glycerol. The results further show that the amount of glycerol produced was 35-48% of the combined total of pyruvate, acetate and succinate produced. It is apparent that some of the glycerol 3-phosphate produced in glycolysis in the presence of salicylhydroxamic acid is dephosphorylated to form glycerol while the rest is oxidised via cytochrome aa3 to form acetate, succinate and pyruvate.  相似文献   

14.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

15.
1. Palmitate oxidation rates and activities of creatine kinase, cytochrome c oxidase and citrate synthase were determined in homogenates of three different human muscles and their derived muscle cell cultures. Palmitate oxidation was also assayed in intact cultured cells (myotubes). 2. Biopsies obtained from m. rectus abdominis exhibited a lower palmitate oxidation rate and lower activities of citrate synthase and cytochrome c oxidase than those from m. gluteus and m. quadriceps. In contrast, cell cultures obtained from the three muscles were mutually comparable with regard to these mitochondrial activities. 3. Although cell cultures only reached a low differentiation grade (judged by the total creatine kinase activity and percentage isoenzyme-MM) they are well comparable with the original biopsies with respect to citrate synthase activity and capacity of palmitate oxidation. The activity of cytochrome c oxidase was clearly lower in the cultured cells. 4. Palmitate was more completely oxidized in intact myotubes than in homogenates of myotubes. Apparent Km and Vmax values of palmitate oxidation did not differ significantly in homogenates and intact preparations of myotubes.  相似文献   

16.
Myosin and creatine kinase were co-immobilized onto Immunodyne films to mimic the behaviour of creatine kinase bound to the M-line of myofilaments. The Mg-ATPase activity of bound myosin was studied by a coupled enzymatic assay, which detects Mg-ADP in the bulk solution by means of pyruvate kinase and lactate dehydrogenase. The competition for Mg-ADP between pyruvate kinase and creatine kinase either free in solution or co-immobilized with myosin was studied at various creatine phosphate concentrations. Bound creatine kinase competed efficiently when present in very low amounts, corresponding to an activity ratio higher than 1:20,000 between creatine kinase and pyruvate kinase and a molar ratio higher than 1:1000 between creatine kinase and myosin. The Mg-ADP produced by myosin ATPase in the vicinity of the film did not diffuse into the bulk solution but, in the presence of creatine phosphate, was recycled into Mg-ATP by the neighbouring creatine kinase. The existence of an unstirred layer near the surface of the film is sufficient to explain the channeling of ADP (or ATP) between co-immobilized myosin and creatine kinase, without direct interaction or 'intimate coupling' between the enzymes. The problem now is to determine the importance of this kind of facilitated diffusion in the myofilaments in vivo.  相似文献   

17.
PCR-RFLP analysis of the ND3/ND4L/ND4 and 12S/16S rRNA regions and nucleotide sequence variation of the cytochrome b gene were used to study the mtDNA divergence in species of the family Cyprinidae, to examine the phylogenetic relationships of the species, and to identify their taxonomic status. The results indicated that an ancestral form diverged into silver crucian carp and crucian carp after its separation from the common carp lineage. The divergence of continental Carassius auratus gibelio and Japanese C. auratus cuvieri occurred more recently. Two well distinguishable mtDNA phylogroups, suggesting divergent evolution, were observed in continental C. auratus gibelio populations. The divergence was possibly related to the formation of two silver crucian carp groups with different types of reproduction, triploid gynogenetic and diploid gonochoric. At the same time, the results supported the high probability of current genetic exchange between the forms. In view of these findings and high morphological similarity of the two forms, they were not considered to be separate species.  相似文献   

18.
In isolated and purified cardiac myofibrillar and sarcolemmal preparations, the route of movement of ADP produced in the Mg2+-ATPase reactions was studied by investigating the efficiency of competition between the endogenous creatine kinase and exogenous pyruvate kinase reactions. In the homogeneous control system composed of hexokinase and glucose as ATPase, soluble creatine kinase rapidly rephosphorylated ADP produced in the presence of 1 mM ATP, but the addition of pyruvate kinase in an increasing amount inhibited the reaction of creatine release from phosphocreatine and symmetrically increased the rate of pyruvate production from phosphoenol pyruvate. At a pyruvate-kinase/creatine-kinase activity ratio (PK/CK) of 50, all ADP was used by the pyruvate kinase. In myofibrillar and sarcolemmal preparations containing particulate creatine kinase, the creatine kinase reaction was much less efficiently suppressed by pyruvate kinase, and at PK/CK = 50 half-maximal release of creatine was still observed. The rate of immediate myofibrillar MgADP rephosphorylation in the endogenous creatine-kinase reaction was observed to be governed by the concentration of phosphocreatine in accordance with the kinetics of this enzyme. The physiological significance of these findings is discussed.  相似文献   

19.
PCR-RFLP analysis of the ND3/ND4L/ND4 and 12S/16S rRNA regions and nucleotide sequence variation of the cytochrome b gene were used to study the mtDNA divergence in species of the family Cyprinidae, to examine the phylogenetic relationships of the species, and to identify their taxonomic status. The results indicated that an ancestral form diverged into silver crucian carp and crucian carp after its separation from the common carp lineage. The divergence of continental Carassius auratus gibelio and Japanese C. auratus cuvieri occurred more recently. Two well distinguishable mtDNA phylogroups, suggesting divergent evolution, were observed in continental C. auratus gibelio populations. The divergence was possibly related to the formation of two silver crucian carp groups with different types of reproduction, triploid gynogenetic and diploid gonochoric. At the same time, the results supported the high probability of current genetic exchange between the forms. In view of these findings and high morphological similarity of the two forms, they were not considered to be separate species.  相似文献   

20.
In some species of hagfish, the phenomenon of chromosome elimination occurs during embryogenesis. However, only two repetitive DNA families are known to be represented in chromosomes that are eliminated from somatic cells of the Japanese hagfish Eptatretus okinoseanus. Using molecular analyses, another germ line-restricted, highly repetitive DNA family has been detected in another Japanese hagfish, Paramyxine atami. The repeat unit of this family, which is 83 bp long, has been designated “EEPa1”, for Eliminated Element of P. atami 1. DNA filter hybridization using EEPa1 as a probe revealed that this family is shared among several species and is conserved in the germline DNA. Although eliminated, repetitive DNA that is shared interspecifically has not been reported in hagfish species, cases of chromatin diminution and chromosome elimination processes have been described previously in other organisms.The patterns and intensities of hybridization signals suggest that members of the repetitive DNA family defined by EEPa1 have undergone concerted molecular evolution. Received: 7 January 1997 / Accepted: 13 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号