首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

2.
Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.  相似文献   

3.
Bordetella pertussis, the causative agent of whooping cough, secretes and releases adenylate cyclase toxin (ACT), which is a protein bacterial toxin that targets host cells and disarms immune defenses. ACT binds filamentous haemagglutinin (FHA), a surface‐displayed adhesin, and until now, the consequences of this interaction were unknown. A B. bronchiseptica mutant lacking ACT produced more biofilm than the parental strain; leading Irie et al. to propose the ACT‐FHA interaction could be responsible for biofilm inhibition. Here we characterize the physical interaction of ACT with FHA and provide evidence linking that interaction to inhibition of biofilm in vitro. Exogenous ACT inhibits biofilm formation in a concentration‐dependent manner and the N‐terminal catalytic domain of ACT (AC domain) is necessary and sufficient for this inhibitory effect. AC Domain interacts with the C‐terminal segment of FHA with ~650 nM affinity. ACT does not inhibit biofilm formation by Bordetella lacking the mature C‐terminal domain (MCD), suggesting the direct interaction between AC domain and the MCD is required for the inhibitory effect. Additionally, AC domain disrupts preformed biofilm on abiotic surfaces. The demonstrated inhibition of biofilm formation by a host‐directed protein bacterial toxin represents a novel regulatory mechanism and identifies an unprecedented role for ACT.  相似文献   

4.
Contact‐dependent growth inhibition (CDI) is a phenomenon in which Gram‐negative bacteria use the toxic C‐terminus of a large surface‐exposed exoprotein to inhibit the growth of susceptible bacteria upon cell–cell contact. Little is known about when and where bacteria express the genes encoding CDI system proteins and how these systems contribute to the survival of bacteria in their natural niche. Here we establish that, in addition to mediating interbacterial competition, the Burkholderia thailandensis CDI system exoprotein BcpA is required for biofilm development. We also provide evidence that the catalytic activity of BcpA and extracellular DNA are required for the characteristic biofilm pillars to form. We show using a bcpAgfp fusion that within the biofilm, expression of the CDI system‐encoding genes is below the limit of detection for the majority of bacteria and only a subset of cells express the genes strongly at any given time. Analysis of a strain constitutively expressing the genes indicates that native expression is critical for biofilm architecture. Although CDI systems have so far only been demonstrated to be involved in interbacterial competition, constitutive production of the system's immunity protein in the entire bacterial population did not alter biofilm formation, indicating a CDI‐independent role for BcpA in this process. We propose, therefore, that bacteria may use CDI proteins in cooperative behaviours, like building biofilm communities, and in competitive behaviours that prevent non‐self bacteria from entering the community.  相似文献   

5.
Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram‐negatives, increased levels of the second messenger cyclic diguanylate (c‐di‐GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c‐di‐GMP include cell division, differentiation and virulence. Among Gram‐positive bacteria, where the function of c‐di‐GMP signalling is less well characterized, c‐di‐GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c‐di‐GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c‐di‐GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c‐di‐GMP signalling between B. subtilis and B. cereus group bacteria.  相似文献   

6.
Gram‐positive pili are known to play a role in bacterial adhesion to epithelial cells and in the formation of biofilm microbial communities. In the present study we undertook the functional characterization of the pilus ancillary protein 1 (AP1_M6) from Streptococcus pyogenes isolates expressing the FCT‐1 pilus variant, known to be strong biofilm formers. Cell binding and biofilm formation assays using S. pyogenes in‐frame deletion mutants, Lactococcus expressing heterologous FCT‐1 pili and purified recombinant AP1_M6, indicated that this pilin is a strong cell adhesin that is also involved in bacterial biofilm formation. Moreover, we show that AP1_M6 establishes homophilic interactions that mediate inter‐bacterial contact, possibly promoting bacterial colonization of target epithelial cells in the form of three‐dimensional microcolonies. Finally, AP1_M6 knockout mutants were less virulent in mice, indicating that this protein is also implicated in GAS systemic infection.  相似文献   

7.
Conjugative type IV secretion systems (T4SSs) are multi‐protein complexes in Gram‐negative and Gram‐positive (G+) bacteria, responsible for spreading antibiotic resistances and virulence factors among different species. Compared to Gram‐negative bacteria, which establish close contacts for conjugative transfer via sex pili, G+ T4SSs are suggested to employ surface adhesins instead. One example is pCF10, an enterococcal conjugative sex‐pheromone responsive plasmid with a narrow host range, thus disseminating genetic information only among closely related species. This MicroCommentary is dedicated to the crystal structure of the pCF10‐encoded adhesion domain of PrgB presented by Schmitt et al. The authors show in their work that this adhesion domain is responsible for biofilm formation, tight binding and condensation of extracellular DNA (eDNA) and conjugative transfer of pCF10. A sophisticated two‐step mechanism for highly efficient conjugative transfer is postulated, including the formation of PrgB‐mediated long‐range intercellular contacts by binding and establishment of shorter‐range contacts via condensation of eDNA. PrgB binding to lipoteichoic acid on the recipient cell surface stabilizes junctions between the mating partners. The major findings by Schmitt et al. will be brought into a broader context and potential medical applications targeting eDNA as essential component in biofilm formation and conjugation will be discussed.  相似文献   

8.
9.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

10.
11.
The extracellular polymeric substance produced by many human pathogens during biofilm formation often contains extracellular DNA (eDNA). Strands of bacterial eDNA within the biofilm matrix can occur in a lattice‐like network wherein a member of the DNABII family of DNA‐binding proteins is positioned at the vertex of each crossed strand. To date, treatment of all biofilms tested with antibodies directed against one DNABII protein, Integration Host Factor (IHF), results in significant disruption. Here, using non‐typeable Haemophilus influenzae as a model organism, we report that this effect was rapid, IHF‐specific and mediated by binding of transiently dissociated IHF by anti‐IHF even when physically separated from the biofilm by a nucleopore membrane. Further, biofilm disruption fostered killing of resident bacteria by previously ineffective antibiotics. We propose the mechanism of action to be the sequestration of IHF upon dissociation from the biofilm eDNA, forcing an equilibrium shift and ultimately, collapse of the biofilm. Further, antibodies against a peptide positioned at the DNA‐binding tips of IHF were as effective as antibodies directed against the native protein. As incorporating eDNA and associated DNABII proteins is a common strategy for biofilms formed by multiple human pathogens, this novel therapeutic approach is likely to have broad utility.  相似文献   

12.
Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)‐mediated bacterial migration leads to the formation of a fibre‐like Psl matrix. Deletion of T4P in wild type and flagella‐deficient strains results in loss of the Psl‐fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air‐liquid interface. Bacteria lacking T4P‐driven twitching motility including those that still express surface T4P are unable to form the Psl‐fibres. Formation of a Psl‐fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl‐fibres are likely formed by Psl released from bacteria during T4P‐mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P‐driven twitching motility. Furthermore, a radial‐pattern Psl‐fibre matrix is present in the middle of biofilms, a nutrient‐deprived region. These imply a plausible model for how bacteria respond to nutrient‐limited local environment to build a polysaccharide‐fibre matrix by T4P‐dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.  相似文献   

13.
Cell‐cell interaction in the eukaryote‐prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth‐promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae‐bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single‐cell microalgae.  相似文献   

14.
Bacillus subtilis is a soil-dwelling Gram-positive bacterial species that has been extensively studied as a model of biofilm formation and stress-induced cellular differentiation. The tetrameric protein, SinR, has been identified as a master regulator for biofilm formation and linked to the regulation of the early transition states during cellular stress response, such as motility and biofilm-linked biosynthetic genes. SinR is a 111-residue protein that is active as a dimer of dimers, composed of two distinct domains, a DNA-binding helix-turn-helix N-terminus domain and a C-terminal multimerization domain. In order for biofilm formation to proceed, the antagonist, SinI, must inactivate SinR. This interaction results in a dramatic structural rearrangement of both proteins. Here we report the full-length backbone and side chain chemical shift values in addition to the experimentally derived secondary structure predictions as the first step towards directly studying the complex interaction dynamics between SinR and SinI.  相似文献   

15.
Pinheiro F.L., Horn B.L.D., Schultz C.L., de Andrade J.A.F.G. and Sucerquia P.A., 2012: Fossilized bacteria in a Cretaceous pterosaur headcrest. Lethaia, Vol. 45, pp. 495–499. We report herein the first evidence of bacterial autolithification in the Crato Formation of Araripe Basin, Brazil. The fossilized bacteria are associated with a tapejarid pterosaur skull, replacing the soft‐tissue extension of the headcrest. EDS analyses indicate that the bacteria were replaced by phosphate minerals, probably apatite. The bacterial biofilm was likely part of the prokaryotic mat that decomposed the pterosaur carcass at the bottom of the Araripe lagoon. This work suggests that bacterial autolithification could have played a key‐role on soft‐tissue preservation of Crato Formation Lagerstätte. □Bacterial autolithification, Crato Formation, phosphatization, pterosaur, soft‐tissue preservation.  相似文献   

16.
Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil‐dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programmes of cellular specialization and cell–cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis and thereby placing a special emphasis on summarizing the most recent discoveries in the field.  相似文献   

17.

Background  

Non-typeable Haemophilus influenzae biofilm formation is implicated in a number of chronic infections including otitis media, sinusitis and bronchitis. Biofilm structure includes cells and secreted extracellular matrix that is "slimy" and believed to contribute to the antibiotic resistant properties of biofilm bacteria. Components of biofilm extracellular matrix are largely unknown. In order to identify such biofilm proteins an ex-vivo biofilm of a non-typeable Haemophilus influenzae isolate, originally from an otitis media patent, was produced by on-filter growth. Extracellular matrix fraction was subjected to proteomic analysis via LC-MS/MS to identify proteins.  相似文献   

18.
Haemophilus influenzae elaborates a surface protein called Hap, which is associated with the capacity for intimate interaction with cultured epithelial cells. Expression of hap results in the production of three protein species: outer membrane proteins of approximately 155 kDa and 45 kDa and an extracellular protein of approximately 110 kDa. The 155 kDa protein corresponds to full-length mature Hap (without the signal sequence), and the 110 kDa extracellular protein represents the N-terminal portion of mature Hap (designated Haps). In the present study, we examined the mechanism of processing and secretion of Hap. Site-directed mutagenesis suggested that Hap is a serine protease that undergoes autoproteolytic cleavage to generate the 110 kDa extracellular protein and the 45 kDa outer membrane protein. Biochemical analysis confirmed this conclusion and established that cleavage occurs on the bacterial cell surface. Determination of N-terminal amino acid sequence and mutagenesis studies revealed that the 45 kDa protein corresponds to the C-terminal portion of Hap, starting at N1037. Analysis of the secondary structure of this protein (designated Hapβ) predicted formation of a β-barrel with an N-terminal transmembrane α-helix followed by 14 transmembrane β-strands. Additional analysis revealed that the final β-strand contains an amino acid motif common to other β-barrel outer membrane proteins. Upon deletion of this entire C-terminal consensus motif, Hap could no longer be detected in the outer membrane, and secretion of Haps was abolished. Deletion or complete alteration of the final three amino acid residues had a similar but less dramatic effect, suggesting that this terminal tripeptide is particularly important for outer membrane localization and/or stability of the protein. In contrast, isolated point mutations that disrupted the amphipathic nature of the consensus motif or eliminated the C-terminal tryptophan had no effect on outer membrane localization of Hap or secretion of Haps. These results provide insight into a growing family of Gram-negative bacterial exoproteins that are secreted by an IgA1 protease-like mechanism; in addition, they contribute to a better understanding of the structural determinants of targeting of β-barrel proteins to the bacterial outer membrane.  相似文献   

19.
Cyclic guanosine 3′,5′‐monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro. The linked gene XC_0249 encodes a protein with a cyclic mononucleotide‐binding (cNMP) domain and a GGDEF diguanylate cyclase domain. The activity of XC_0249 in cyclic di‐GMP synthesis was enhanced by addition of cyclic GMP. The isolated cNMP domain of XC_0249 bound cyclic GMP and a structure–function analysis, directed by determination of the crystal structure of the holo‐complex, demonstrated the site of cyclic GMP binding that modulates cyclic di‐GMP synthesis. Mutation of either XC_0250 or XC_0249 led to a reduced virulence to plants and reduced biofilm formation in vitro. These findings describe a regulatory pathway in which cyclic GMP regulates virulence and biofilm formation through interaction with a novel effector that directly links cyclic GMP and cyclic di‐GMP signalling.  相似文献   

20.
Nontypeable Haemophilus influenzae (NTHi), an important human respiratory pathogen, frequently causes biofilm infections. Currently, resistance of bacteria within the biofilm to conventional antimicrobials poses a major obstacle to effective medical treatment on a global scale. Novel agents that are effective against NTHi biofilm are therefore urgently required. In this study, a series of natural and synthetic chalcones with various chemical substituents were evaluated in vitro for their antibiofilm activities against strong biofilm‐forming strains of NTHi. Of the test chalcones, 3‐hydroxychalcone (chalcone 8 ) exhibited the most potent inhibitory activity, its mean minimum biofilm inhibitory concentration (MBIC50) being 16 μg/mL (71.35 μM), or approximately sixfold more active than the reference drug, azithromycin (MBIC50 419.68 μM). The inhibitory activity of chalcone 8 , which is a chemically modified chalcone, appeared to be superior to those of the natural chalcones tested. Significantly, chalcone 8 inhibited biofilm formation by all studied NTHi strains, indicating that the antibiofilm activities of this compound occur across multiple strong‐biofilm forming NTHi isolates of different clinical origins. According to antimicrobial and growth curve assays, chalcone 8 at concentrations that decreased biofilm formation did not affect growth of NTHi, suggesting the biofilm inhibitory effect of chalcone 8 is non‐antimicrobial. In terms of structure–activity relationship, the possible substituent on the chalcone backbone required for antibiofilm activity is discussed. These findings indicate that 3‐hydroxychalcone (chalcone 8 ) has powerful antibiofilm activity and suggest the potential application of chalcone 8 as a new therapeutic agent for control of NTHi biofilm‐associated infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号