首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of increasingly high-throughput and sensitive mass spectroscopy-based proteomic techniques provides new opportunities to examine the physiology and pathophysiology of many biologic fluids and tissues. The purpose of this study was to determine protein expression profiles of high-abundance synovial fluid (SF) proteins in health and in the prevalent joint disease osteoarthritis (OA). A cross-sectional study of 62 patients with early OA (n = 21), patients with late OA (n = 21), and control individuals (n = 20) was conducted. SF proteins were separated by using one-dimensional PAGE, and the in-gel digested proteins were analyzed by electrospray ionization tandem mass spectrometry. A total of 362 spots were examined and 135 high-abundance SF proteins were identified as being expressed across all three study cohorts. A total of 135 SF proteins were identified. Eighteen proteins were found to be significantly differentially expressed between control individuals and OA patients. Two subsets of OA that are not dependent on disease duration were identified using unsupervised analysis of the data. Several novel SF proteins were also identified. Our analyses demonstrate no disease duration-dependent differences in abundant protein composition of SF in OA, and we clearly identified two previously unappreciated yet distinct subsets of protein profiles in this disease cohort. Additionally, our findings reveal novel abundant protein species in healthy SF whose functional contribution to SF physiology was not previously recognized. Finally, our studies identify candidate biomarkers for OA with potential for use as highly sensitive and specific tests for diagnostic purposes or for evaluating therapeutic response.  相似文献   

2.
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

3.
Serum samples from non-Hodgkin lymphoma (NHL) patients who had not undergone chemotherapy, lymphnoditis patients, and healthy adults were analyzed using surface-enhanced laser desorption–ionization time-of-flight mass spectrometry (SELDI-TOF MS) to detect the differentially expressed serum proteins. Models were developed to distinguish between the healthy adult group and the NHL group, with a sensitivity of 69% and specificity of 90%, and between the lymphnoditis group and the NHL group with a sensitivity of 74% and specificity of 84%. A protein with the m/z of M10 197.91 u was expressed at a significantly higher level in the NHL group, compared to the other groups. Furthermore, differences were also significant among different stages of NHL and among samples with different International Prognosis Index (IPI) scores or lactase dehydrogenase (LDH) levels. The three identified proteins may offer a new serological approach for early diagnosis, differential diagnosis, and pathogenic investigation of NHL. And the protein with the m/z of M10 197.91 u may be a new serological biomarker for monitoring treatment response and evaluating the prognosis of patients with NHL.  相似文献   

4.
Shao C  Li M  Li X  Wei L  Zhu L  Yang F  Jia L  Mu Y  Wang J  Guo Z  Zhang D  Yin J  Wang Z  Sun W  Zhang Z  Gao Y 《Molecular & cellular proteomics : MCP》2011,10(11):M111.010975
Urine is an important source of biomarkers. A single proteomics assay can identify hundreds of differentially expressed proteins between disease and control samples; however, the ability to select biomarker candidates with the most promise for further validation study remains difficult. A bioinformatics tool that allows accurate and convenient comparison of all of the existing related studies can markedly aid the development of this area. In this study, we constructed the Urinary Protein Biomarker (UPB) database to collect existing studies of urinary protein biomarkers from published literature. To ensure the quality of data collection, all literature was manually curated. The website (http://122.70.220.102/biomarker) allows users to browse the database by disease categories and search by protein IDs in bulk. Researchers can easily determine whether a biomarker candidate has already been identified by another group for the same disease or for other diseases, which allows for the confidence and disease specificity of their biomarker candidate to be evaluated. Additionally, the pathophysiological processes of the diseases can be studied using our database with the hypothesis that diseases that share biomarkers may have the same pathophysiological processes. Because of the natural relationship between urinary proteins and the urinary system, this database may be especially suitable for studying the pathogenesis of urological diseases. Currently, the database contains 553 and 275 records compiled from 174 and 31 publications of human and animal studies, respectively. We found that biomarkers identified by different proteomic methods had a poor overlap with each other. The differences between sample preparation and separation methods, mass spectrometers, and data analysis algorithms may be influencing factors. Biomarkers identified from animal models also overlapped poorly with those from human samples, but the overlap rate was not lower than that of human proteomics studies. Therefore, it is not clear how well the animal models mimic human diseases.  相似文献   

5.
Proteomic analysis is not limited to the analysis of serum or tissues. Synovial, peritoneal, pericardial and cerebrospinal fluid represent unique proteomes for disease diagnosis and prognosis. In particular, cerebrospinal fluid serves as a rich source of putative biomarkers that are not solely limited to neurologic disorders. Peptides, proteolytic fragments and antibodies are capable of crossing the blood-brain barrier, thus providing a repository of pathologic information. Proteomic technologies such as immunoblotting, isoelectric focusing, 2D gel electrophoresis and mass spectrometry have proven useful for deciphering this unique proteome. Cerebrospinal fluid proteins are generally less abundant than their corresponding serum counterparts, necessitating the development and use of sensitive analytical techniques. This review highlights some of the promising areas of cerebrospinal fluid proteomic research and their clinical applications.  相似文献   

6.
The continuing expansion of proteomic technology has been fueled by the potential for discovering novel biomarkers that may be used for the early detection of disease. It has been proposed that human cerebrospinal fluid (CSF), which surrounds and protects the brain and spinal cord from traumatic injury, may be a valuable target for the diagnosis of a variety of conditions such as Alzheimer's disease, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson's disease. The immense complexity of biofluids, however, still requires that considerable development be made in the analytical techniques used so that comprehensive coverage of the proteins present in such samples is achieved. Using a simple separation strategy the protein complement of human ventricular cerebrospinal fluid obtained from patients with hydrocephalus was evaluated. The study resulted in the identification of over 1500 unique proteins that were found within all nine CSF samples that were analyzed. Comparison with the HUPO serum proteome database demonstrated that human ventricular CSF contains a large array of proteins that may be unique to CSF. This analysis greatly increases our knowledge of the protein content of this clinically important biofluid.  相似文献   

7.
8.
Membranous nephropathy is one of the most common causes of primary glomerular diseases worldwide. The present study adopted a gel-based proteomics approach to better understand the pathophysiology and define biomarker candidates of human membranous nephropathy using an animal model of passive Heymann nephritis (PHN). Clinical characteristics of Sprague-Dawley rats injected with rabbit anti-Fx1A antiserum mimicked those of human membranous nephropathy. Serial urine samples were collected at Days 0, 10, 20, 30, 40, and 50 after the injection with anti-Fx1A (number of rats = 6; total number of gels = 36). Urinary proteome profiles were examined using 2D-PAGE and SYPRO Ruby staining. Quantitative intensity analysis and ANOVA with Tukey post-hoc multiple comparisons revealed 37 differentially expressed proteins among 6 different time-points. These altered proteins were successfully identified by MALDI-TOF MS and classified into 6 categories: (i) proteins with decreased urinary excretion during PHN; (ii) proteins with increased urinary excretion during PHN; (iii) proteins with increased urinary excretion during PHN, but which finally returned to basal levels; (iv) proteins with increased urinary excretion during PHN, but which finally declined below basal levels; (v) proteins with undetectable levels in the urine during PHN; and (vi) proteins that were detectable in the urine only during PHN. Most of these altered proteins have functional significance in signaling pathways, glomerular trafficking, and controlling the glomerular permeability. The ones in categories (v) and (vi) may serve as biomarkers for detecting or monitoring membranous nephropathy. After normalization of the data with 24-h urine creatinine excretion, changes in 34 of initially 37 differentially expressed proteins remained statistically significant. These data underscore the significant impact of urinary proteomics in unraveling disease pathophysiology and biomarker discovery.  相似文献   

9.
Characterization of the human heart mitochondrial proteome   总被引:25,自引:0,他引:25  
To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.  相似文献   

10.
We describe methods for broad characterization of the human plasma proteome. The combination of stepwise immunoglobulin G (IgG) and albumin protein depletion by affinity chromatography and ultrahigh-efficiency capillary liquid chromatography separations coupled to ion trap-tandem mass spectrometry enabled identification of 2392 proteins from a single plasma sample with an estimated confidence level of > 94%, and an additional 2198 proteins with an estimated confidence level of 80%. The relative abundances of the identified proteins span a range of over eight orders of magnitude in concentration (< 30 pg/mL to approximately 30 mg/mL), facilitated by the attomole-level sensitivity of the analysis methods. More than 80% of the observed proteins demonstrate interactions with IgG and/or albumin, and the human plasma protein loss in the affinity chromatography/strong cation exchange/reversed-phase liquid chromatography-tandem mass spectrometry methodology was investigated in detail. The results of this study provide a basis for a wide range of plasma proteomics studies, including broad quantitation of relative abundances in comparative studies of the identification of novel protein disease markers, as well as further studies of protein-protein interactions.  相似文献   

11.
12.
The abundance profile of the human urinary proteome is known to change as a result of diseases or drug toxicities, particularly of those affecting the kidney and the urogenital tract. A consequence of such insults is the ability to identify proteins in urine, which may be useful as quantitative biomarkers. To succeed in discovering them, reproducible urine sample preparation methods and good protein resolution in two-dimensional electrophoresis (2-DE) gels for parallel semiquantitative protein measurements are desirable. Here, we describe a protein fractionation strategy enriching proteins of molecular masses (M(r)) lower than 30 kDa in a fraction separate from larger proteins. The fraction containing proteins with M(r)s higher than 30 kDa was subsequently subjected to immunoaffinity subtraction chromatography removing most of the highly abundant albumin and immunoglobulin G. Following 2-DE display, superior protein spot resolution was observed. Subsequent high-throughput mass spectrometry analysis of ca. 1400 distinct spots using matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting and liquid chromatography-electrospray ionization tandem mass spectrometry lead to the successful identification of 30% of the proteins. As expected from high levels of post-translational modifications in most urinary proteins and the presence of proteolytic products, ca. 420 identified spots collapsed into 150 unique protein annotations. Only a third of the proteins identified in this study are described as classical plasma proteins in circulation, which are known to be relatively abundant in urine despite their retention to a large extent in the glomerular blood filtration process. As a proof of principle that our urinary proteome display effort holds promise for biomarker discovery, proteins isolated from the urine of a renal cell carcinoma patient were profiled prior to and after nephrectomy. Particularly, the decrease in abundance of the kininogen 2-DE gel spot train in urine after surgery was striking.  相似文献   

13.
In‐depth studies on the proteome of reflex tears are still inadequate. Hence, further studies on this subject will unravel the key proteins which are conjectured to possess vital functions in the protection of the ocular surface. Therefore, this study investigated the differences in the expression levels in proteome of reflex compared to basal tears. Basal (n = 10) and reflex (n = 10) tear samples from healthy subjects were collected employing the capillary method, subsequently pooled and the proteomes were characterized employing 1DE combined with LC‐ESI‐MS/MS strategy for label‐free quantitative (LFQ) analysis. The differentially expressed proteins were validated by 2DE combined with LC‐ESI‐MS/MS and targeted‐MS approach called accurate inclusion mass screening (AIMS) strategies. The analysis of the reflex tear proteome demonstrated increased abundance in proline‐rich protein 4 (PRR4) and zymogen granule protein 16 homolog B (ZG16B) for the first time. Other abundant lacrimal proteins, e.g. lactotransferrin and lysozyme remained constant. Predominantly, the lacrimal gland‐specific PRR4 represents the major increased protein in reflex tears in an attempt to wash out irritants that come into contact with the eye. Conversely, decreased abundance in Ig alpha‐1 chain C, polymeric immunoglobulin receptor, cystatin S/SN, clusterin and mammaglobin were observed. This study had further unraveled the intricate proteome regulation during reflex tearing, especially the potential role of PRR4, which may be the key player in the protection and maintenance of dynamic balance of the ocular surface.  相似文献   

14.
15.

Background  

Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families.  相似文献   

16.

Background

The highly homologous PE_PGRS (Proline-glutamic acid_polymorphic GC-rich repetitive sequence) genes are members of the PE multigene family which is found only in mycobacteria. PE genes are particularly abundant within the genomes of pathogenic mycobacteria where they seem to have expanded as a result of gene duplication events. PE_PGRS genes are characterized by their high GC content and extensive repetitive sequences, making them prone to recombination events and genetic variability.

Results

Comparative sequence analysis of Mycobacterium tuberculosis genes PE_PGRS17 (Rv0978c) and PE_PGRS18 (Rv0980c) revealed a striking genetic variation associated with this typical tandem duplicate. In comparison to the M. tuberculosis reference strain H37Rv, the variation (named the 12/40 polymorphism) consists of an in-frame 12-bp insertion invariably accompanied by a set of 40 single nucleotide polymorphisms (SNPs) that occurs either in PE_PGRS17 or in both genes. Sequence analysis of the paralogous genes in a representative set of worldwide distributed tubercle bacilli isolates revealed data which supported previously proposed evolutionary scenarios for the M. tuberculosis complex (MTBC) and confirmed the very ancient origin of " M. canettii " and other smooth tubercle bacilli. Strikingly, the identified polymorphism appears to be coincident with the emergence of the post-bottleneck successful clone from which the MTBC expanded. Furthermore, the findings provide direct and clear evidence for the natural occurrence of gene conversion in mycobacteria, which appears to be restricted to modern M. tuberculosis strains.

Conclusion

This study provides a new perspective to explore the molecular events that accompanied the evolution, clonal expansion, and recent diversification of tubercle bacilli.  相似文献   

17.
Feng JT  Liu YK  Song HY  Dai Z  Qin LX  Almofti MR  Fang CY  Lu HJ  Yang PY  Tang ZY 《Proteomics》2005,5(17):4581-4588
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and ranks second in China. The prognosis of HCC remains dismal mainly because of its late diagnosis, especially in patients with coexisting chronic liver diseases. To identify serum biomarkers for HCC, sera from 20 healthy volunteers, 20 hepatitis B virus (HBV) infected patients and 20 HCC patients were selected for screening study and same number of sera into the same three groups were used for validation study. A strategy including sonication, albumin and immunoglobulin G (IgG) depletion and desalting was optimized for screening differentially expressed proteins of low abundance in serum. By 2-DE image analysis and MALDI-TOF-MS/MS identification, eight proteins including heat-shock protein 27 (HSP27), alpha-fetoprotein (AFP), alpha-1 antitrypsin, clusterin, caeruloplasmin, haptoglobin alpha2 chain, tranferrin and transthyretin were found significantly changed among the healthy, HBV and HCC groups. Further validation study by Western blot showed the detection of HSP27 in 90% HCC sera and two HBV sera, but in none of normal sera. Thus, 2-DE based serum proteome analysis can be useful in the screening of serum biomarkers for HCC and HSP27 could aid in the diagnosis of HCC though further validation is needed.  相似文献   

18.

Background  

The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study.  相似文献   

19.

Background

Complex molecular events lead to development and progression of liver cirrhosis to HCC. Differentially expressed nuclear membrane associated proteins are responsible for the functional and structural alteration during the progression from cirrhosis to carcinoma. Although alterations/ post translational modifications in protein expression have been extensively quantified, complementary analysis of nuclear membrane proteome changes have been limited. Deciphering the molecular mechanism that differentiate between normal and disease state may lead to identification of biomarkers for carcinoma.

Results

Many proteins displayed differential expression when nuclear membrane proteome of hepatocellular carcinoma (HCC), fibrotic liver, and HepG2 cell line were assessed using 2-DE and ESI-Q-TOF MS/MS. From the down regulated set in HCC, we have identified for the first time a 15 KDa cytochrome b5A (CYB5A), ATP synthase subunit delta (ATPD) and Hemoglobin subunit beta (HBB) with 11, 5 and 22 peptide matches respectively. Furthermore, nitrosylation studies with S-nitrosocysteine followed by immunoblotting with anti SNO-cysteine demonstrated a novel and biologically relevant post translational modification of thiols of CYB5A in HCC specimens only. Immunofluorescence images demonstrated increased protein S-nitrosylation signals in the tumor cells and fibrotic region of HCC tissues. The two other nuclear membrane proteins which were only found to be nitrosylated in case of HCC were up regulated ATP synthase subunit beta (ATPB) and down regulated HBB. The decrease in expression of CYB5A in HCC suggests their possible role in disease progression. Further insight of the functional association of the identified proteins was obtained through KEGG/ REACTOME pathway analysis databases. String 8.3 interaction network shows strong interactions with proteins at high confidence score, which is helpful in characterization of functional abnormalities that may be a causative factor of liver pathology.

Conclusion

These findings may have broader implications for understanding the mechanism of development of carcinoma. However, large scale studies will be required for further verification of their critical role in development and progression of HCC.  相似文献   

20.
Aquatic pollution is an increasing problem and requires extensive research efforts to understand associated consequences and to find suitable solutions. The crustacean Daphnia is a keystone species in lacustrine ecosystems by connecting primary producers with higher trophic levels. Therefore, Daphnia is perfectly suitable to investigate biological effects of freshwater pollution and is frequently used as an important model organism in ecotoxicology. The field of ecotoxicoproteomics has become increasingly prevalent, as proteins are important for an organism's physiology and respond rapidly to changing environmental conditions. However, one obstacle in proteome analysis of Daphnia is highly abundant proteins like vitellogenin, decreasing the analytical depth of proteome analysis. To improve proteome coverage in Daphnia, we established an easy-to-use procedure based on the LC-MS/MS of whole daphnids and the dissected Daphnia gut, which is the main tissue getting in contact with soluble and particulate pollutants, separately. Using a comprehensive spectral library, generated by gas-phase fractionation and a data-independent acquisition method, we identified 4621 and 5233 protein groups at high confidence (false discovery rate < 0.01) in Daphnia and Daphnia gut samples, respectively. By combining both datasets, a proteome coverage of 6027 proteins was achieved, demonstrating the effectiveness of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号