首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian Toll-like receptor 4, TLR4, is an important component in the innate immune response to gram-negative bacterial infection. The role of TLR4 in antiviral immunity has been largely unexplored. In this study, the in vivo immune responses to respiratory syncytial virus (RSV) and influenza virus infection were examined in TLR4-deficient (C57BL/10ScNCr) and TLR4-expressing (C57BL/10Sn) mice. TLR4-deficient mice challenged with RSV, but not influenza virus, exhibited impaired natural killer (NK) cell and CD14(+) cell pulmonary trafficking, deficient NK cell function, impaired interleukin-12 expression, and impaired virus clearance compared to mice expressing TLR4. These findings suggest that Toll signaling pathways have an important role in innate immunity to RSV.  相似文献   

2.
In search of intrinsic factors that contribute to the distinctively strong immunogenicity of a non-mutated cancer/testis antigen, we found that NY-ESO-1 forms polymeric structures through disulfide bonds. NY-ESO-1 binding to immature dendritic cells was dependent on its polymeric structure and involved Toll-like receptor-4 (TLR4) on the surface of immature dendritic cells in mouse and human. Gene gun-delivered plasmid encoding the wild-type NY-ESO-1 readily induced T cell-dependent antibody (Ab) responses in wild-type C57BL/10 mice but not TLR4-knock-out C57BL/10ScNJ mice. Disrupting polymeric structures of NY-ESO-1 by cysteine-to-serine (Cys-to-Ser) substitutions lead to diminished immunogenicity and altered TLR4-dependence in the induced Ab response. To demonstrate its adjuvant effect, NY-ESO-1 was fused with a major mugwort pollen allergen Art v 1 and a tumor-associated antigen, carbonic anhydrase 9. Plasmid DNA vaccines encoding the fusion genes generated robust immune responses against otherwise non-immunogenic targets in mice. Polymeric structure and TLR4 may play important roles in rendering NY-ESO-1 immunogenic and thus serve as a potent molecular adjuvant. NY-ESO-1 thus represents the first example of a cancer/testis antigen that is a also damage-associated molecular pattern.  相似文献   

3.
Cutaneous leishmaniasis caused by Leishmania major is an emergent, uncontrolled public health problem and there is no vaccine. A promising prophylactic approach has been immunotherapy with Toll-like receptor (TLR) agonists to enhance parasite-specific immune responses. We have previously reported that vaccination of C57BL/6 mice with live L. major plus the TLR9 agonist CpG DNA prevents lesion development and confers immunity to reinfection. Our current study aims to investigate whether other TLR agonists can be used in leishmanization without induction of lesion formation. We found that live L. major plus the TLR2 agonist Pam3CSK4 reduced the pathology in both genetically resistant (C57BL/6) and susceptible (BALB/c) mouse strains. The addition of Pam3CSK4 activated dermal dendritic cells and macrophages to produce greater amounts of proinflammatory cytokines in both mouse strains. Both Th1 and Th17 responses were enhanced by leishmanization with L. major plus Pam3CSK4 in C57BL/6 mice; however, Th17 cells were unchanged in BALB/c mice. The production of IL-17 from neutrophils was enhanced in both strains infected with L. major plus Pam3CSK4. However, the sustained influx of neutrophils in sites of infection was only observed in BALB/c mice. Our data demonstrate that the mechanism behind leishmanization with TLR agonists may be very different depending upon the immunological background of the host. This needs to be taken into account for the rational development of successful vaccines against the disease.  相似文献   

4.
IL-18 is an important mediator of obstruction-induced renal fibrosis and tubular epithelial cell injury independent of TGF-β1 activity. We sought to determine whether the profibrotic effect of IL-18 is mediated through Toll-like receptor 4 (TLR4). Male C57BL6 wild type and mice transgenic for human IL-18-binding protein were subjected to left unilateral ureteral obstruction versus sham operation. The kidneys were harvested 1 week postoperatively and analyzed for IL-18 production and TLR4 expression. In a separate arm, renal tubular epithelial cells (HK-2) were directly stimulated with IL-18 in the presence or absence of a TLR4 agonist, TLR4 antagonist, or TLR4 siRNA knockdown. Cell lysates were analyzed for TLR4, α-smooth muscle actin, and E-cadherin expression. TLR4 promotor activity, as well as AP-1 activation and the effect of AP-1 knockdown on TLR4 expression, was evaluated in HK-2 cells in response to IL-18 stimulation. The results demonstrate that IL-18 induces TLR4 expression during unilateral ureteral obstruction and induces TLR4 expression in HK-2 cells via AP-1 activation. Inhibition of TLR4 or knockdown of TLR4 gene expression in turn prevents IL-18-induced profibrotic changes in HK-2 cells. These results suggest that IL-18 induces profibrotic changes in tubular epithelial cells via increased TLR4 expression/signaling.  相似文献   

5.
Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.  相似文献   

6.
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.  相似文献   

7.
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.  相似文献   

8.
Little is known about the innate immune mechanisms regulating adaptive immune responses elicited through the skin. Tissue injury is postulated to liberate Toll like receptor 4 (TLR4) ligands. In this study, we determined whether TLR4 signaling modulates the response to epidermal injury induced by tape stripping (TS) and whether it alters humoral and cellular immune responses generated through epicutaneous immunization with peptide+cholera toxin (CT). The combined use of cholera toxin and TS with antigen promoted optimal antigen-specific CD4(+) and CD8(+) T cell proliferation in Balb/c and C57BL/6 mice, respectively. TLR4 mutant mice had similar T cell responses to wild type mice. Further, OVA-protein specific IgG, IgG(1), IgG(2a), and IgE titers were similar in wild type and TLR4 mutant mice. Thus, TLR4 signaling was not required for the generation of epicutaneous T cell or antibody mediated immune responses and did not alter the quality of the immune responses elicited.  相似文献   

9.
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune response against influenza A virus (IAV) infection; however, the role of Toll-like receptor 7 (TLR7) during the innate immune response to IAV infection and the cell types affected by the absence of TLR7 are not clearly understood. In this study, we show that myeloid derived suppressor cells (MDSC) accumulate in the lungs of TLR7 deficient mice more so than in wild-type C57Bl/6 mice, and display increased cytokine expression. Furthermore, there is an increase in production of Th2 cytokines by TLR7(-/-) compared with wildtype CD4+ T-cells in vivo, leading to a Th2 polarized humoral response. Our findings indicate that TLR7 modulates the accumulation of MDSCs during an IAV infection in mice, and that lack of TLR7 signaling leads to a Th2-biased response.  相似文献   

10.
PERA/Ei (PE) mice are susceptible to tumor induction by polyomavirus (Py), while C57BR/cdJ (BR) mice are resistant. Antigen-presenting cells from BR mice respond to the virus with interleukin-12 (IL-12) and those from PE mice with IL-10. These polarized cytokine responses underlie the development of effective antitumor immunity in BR mice and the lack thereof in PE mice. An ex vivo cytokine production assay using spleen cells from infected [PE × BR] F2 mice together with a genome-wide SNP (single-nucleotide polymorphism)-based QTL (quantitative trait locus) analysis was used to map the determinant of cytokine production to a region of chromosome 4 carrying the Toll-like receptor 4 (TLR4) gene. Genotyping of infected F2 mice showed concordance of TLR4 allele-specific DNA sequences with the cytokine profile. Cytokine responses elicited by Py are MyD88 dependent. Bacterial lipopolysaccharide (LPS), a known TLR4 ligand, induced the same polarized responses as the virus in these host strains. Spleen cells from C3H/HeJ and C57BL/10ScNJ LPS-nonresponsive mice challenged in vitro with Py showed an impaired IL-12 response but were unaffected in IL-10 production. TLR4s of strains PE and BR differ by 3 amino acid substitutions, 2 in the extracellular domain and 1 in the intracellular domain. cDNAs encoding the TLR4s signaled equally to an NF-κB reporter in 293 cells in a ligand-independent manner. When introduced into TLR2/TLR4 double-knockout macrophages, the TLR4 cDNA from BR mice conferred a robust IL-12 response to Py and no IL-10 response. The TLR4 cDNA from PE mice failed to confer a response with either cytokine. These results establish TLR4 as a key mediator of the cytokine response governing susceptibility to tumor induction by Py.  相似文献   

11.
While high-density lipoprotein (HDL) is known to protect against a wide range of inflammatory stimuli, its anti-inflammatory mechanisms are not well understood. Furthermore, HDL's protective effects against saturated dietary fats have not been previously described. In this study, we used endothelial cells to demonstrate that while palmitic acid activates NF-κB signaling, apolipoprotein A-I, (apoA-I), the major protein component of HDL, attenuates palmitate-induced NF-κB activation. Further, vascular NF-κB signaling (IL-6, MCP-1, TNF-α) and macrophage markers (CD68, CD11c) induced by 24 weeks of a diabetogenic diet containing cholesterol (DDC) is reduced in human apoA-I overexpressing transgenic C57BL/6 mice compared to age-matched WT controls. Moreover, WT mice on DDC compared to a chow diet display increased gene expression of lipid raft markers such as Caveolin-1 and Flotillin-1, and inflammatory Toll-like receptors (TLRs) (TLR2, TLR4) in the vasculature. However apoA-I transgenic mice on DDC show markedly reduced expression of these genes. Finally, we show that in endothelial cells TLR4 is recruited into lipid rafts in response to palmitate, and that apoA-I prevents palmitate-induced TLR4 trafficking into lipid rafts, thereby blocking NF-κB activation. Thus, apoA-I overexpression might be a useful therapeutic tool against vascular inflammation.  相似文献   

12.
The murine Litomosoides sigmodontis model of filarial infection provides the opportunity to elucidate the immunological mechanisms that determine whether these nematode parasites can establish a successful infection or are rejected by the mammalian host. BALB/c mice are fully susceptible to L. sigmodontis infection and can develop patent infection, with the microfilarial stage circulating in the bloodstream. In contrast, mice on the C57BL background are largely resistant to the infection and never produce a patent infection. In this study, we used IL-4 deficient mice on the C57BL/6 background to address the role of IL-4 in the development of L. sigmodontis parasites in a resistant host. Two months after infection, adult worm recovery and the percentage of microfilaraemic mice in infected IL-4 deficient mice were comparable with those of the susceptible BALB/c mice while, as expected, healthy adults were not recovered from wild type C57BL/6 mice. The cytokine and antibody responses reveal that despite similar parasitology the two susceptible strains (BALB/c and IL-4 deficient C57BL/6) have markedly different immune responses: wild type BALB/c mice exhibit a strong Th2 immune response and the IL-4 deficient C57BL/6 mice exhibit a Th1 response. We also excluded a role for antibodies in resistance through infection of B-cell deficient C57BL/6 mice. Our data suggest that the mechanisms that determine parasite clearance in a resistant/non-permissive host are Th2 dependent but that in a susceptible/permissive host, the parasite can develop in the face of a Th2 dominated response.  相似文献   

13.
The mammalian homolog B1 of Unc-93 Caenorhabditis elegans known as UNC93B1 is a chaperone protein that mediates translocation of the nucleic acid-sensing Toll-like receptors (TLRs) from the endoplasmic reticulum to the endolysosomes. The triple deficient (UNC93B1 mutant) mice have a functional single point mutation in the UNC93B1 that results in non-functional TLR3, TLR7, and TLR9. Herein, we demonstrate that UNC93B1 mutant mice, in the C57BL/6 (resistant) genetic background, are highly susceptible to Leishmania major infection. Enhanced swelling of the footpad was associated with high levels of interleukin 10, decreased levels of interferon γ, and increased parasitism. None of the single TLR3, TLR7, and TLR9 knock-out (KO) mice resemble the UNC93B1 mutant phenotype upon infection with L. major. Whereas the double TLR7/TLR9 KO showed a partial phenotype, the triple TLR3/TLR7/TLR9 KO mice were as susceptible as the UNC93B1 mutant mice, when infected with Leishmania parasites. Finally, we demonstrate that treatment with either anti-interleukin 10 receptor monoclonal antibody or recombinant interleukin 12 restored a robust anti-parasite TH1 response and reverted the susceptible phenotype of UNC93B1 mutant mice. Altogether, our results indicate the redundant and essential role of nucleic acid-sensing TLR3, TLR7 and TLR9 in inducing interleukin 12, development of a TH1 response, and resistance to L. major infection in resistant C57BL/6 mice.  相似文献   

14.
15.
Toll-like receptor (TLR) mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The “danger context” elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK) cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8+ T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b+ and CD11c+ cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.  相似文献   

16.
The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no significant differences as compared to C57BL/6 mice. In vitro production of TNF-alpha by macrophages and neutrophil recruitment were significantly inhibited in TLR2-/- mice in response to control yeast strains. Interestingly both TNF-alpha production and neutrophil recruitment in response to Deltagpi7 were significantly increased in all three types of mice, with no differences among them, and laminarin failed to inhibit this increased production of TNF-alpha. These results indicate that the enhanced proinflammatory response to Deltagpi7 does not involve recognition through TLR2, TLR4 nor dectin-1. Therefore, complete GPI anchors confer surface properties that are involved in modulation of cytokine production by macrophages in response to C. albicans.  相似文献   

17.
For several decades, the mouse strains C3H/HeJ and C57BL/10ScNCr have been known to be hyporesponsive to endotoxin or lipopolysaccharide (LPS). Recently, mutations in Toll-like receptor (TLR) 4 have been shown to underlie this aberrant response to LPS. To further determine the relationship between TLR4 and responsiveness to LPS, we genotyped 18 strains of mice for TLR4 and evaluated the physiological and biological responses of these strains to inhaled LPS. Of the 18 strains tested, 6 were wild type for TLR4 and 12 had mutations in TLR4. Of those strains with TLR4 mutations, nine had mutations in highly conserved residues. Among the strains wild type for TLR4, the inflammatory response in the airway induced by inhalation of LPS showed a phenotype ranging from very sensitive (DBA/2) to hyporesponsive (C57BL/6). A broad spectrum of airway hyperreactivity after inhalation of LPS was also observed among strains wild type for TLR4. Although the TLR4 mutant strains C3H/HeJ and C57BL/10ScNCr were phenotypically distinct from the other strains with mutations in the TLR4 gene, the other strains with mutations for TLR4 demonstrated a broad distribution in their physiological and biological responses to inhaled LPS. The results of our study indicate that although certain TLR4 mutations can be linked to a change in the LPS response phenotype, additional genes are clearly involved in determining the physiological and biological responses to inhaled LPS in mammals.  相似文献   

18.
Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved molecular patterns expressed by pathogens. Pneumolysin, an intracellular toxin found in all Streptococcus pneumoniae clinical isolates, is an important virulence factor of the pneumococcus that is recognized by TLR4. Although TLR2 is considered the most important receptor for Gram-positive bacteria, our laboratory previously could not demonstrate a decisive role for TLR2 in host defence against pneumonia caused by a serotype 3 S. pneumoniae . Here we tested the hypothesis that in the absence of TLR2, S. pneumoniae can still be sensed by the immune system through an interaction between pneumolysin and TLR4. C57BL/6 wild-type (WT) and TLR2 knockout (KO) mice were intranasally infected with either WT S. pneumoniae D39 (serotype 2) or the isogenic pneumolysin-deficient S. pneumoniae strain D39 PLN. TLR2 did not contribute to antibacterial defence against WT S. pneumoniae D39. In contrast, pneumolysin-deficient S. pneumoniae only grew in lungs of TLR2 KO mice. TLR2 KO mice displayed a strongly reduced early inflammatory response in their lungs during pneumonia caused by both pneumolysin-producing and pneumolysin-deficient pneumococci. These data suggest that pneumolysin-induced TLR4 signalling can compensate for TLR2 deficiency during respiratory tract infection with S. pneumoniae.  相似文献   

19.
The interaction between intestinal epithelial cells and microbes is partly mediated by Toll-like receptors (TLRs). Sensing of Gram-positive and Gram-negative bacteria by TLR2 and TLR4, respectively, can result in immune system activation and in an exclusion of bacteria from the intestine. To test the impact of these TLRs on bacterial composition, germ-free TLR2/TLR4 double-knock out mice and the corresponding C57BL/10ScSn wild-type mice where associated with fecal bacteria from one single donor mouse. In addition, C3H/HeOuJ and BALB/c mice were used in this study. Fecal bacteria were monitored over 13 weeks with denaturing-gradient gel electrophoresis (DGGE). Colonic bacteria were enumerated by fluorescent in situ hybridization (FISH) and short-chain fatty acids (SCFA) were measured in caecal samples. No effect of the TLRs on intestinal microbiota composition and SCFA concentrations was observed. However, the microbiota composition as reflected by DGGE band patterns differed between C3H and BALB/c mice on the one hand and C57BL/10 mice on the other hand. Corresponding differences between the mouse strains were also observed in cecal propionic, valeric and i-valeric acid concentrations. No differences between the animals were observed in the numbers of bacteria detected by FISH. We conclude that genetic traits but not TLR2 and TLR4 have an impact on the intestinal microbiota composition.  相似文献   

20.

Background

Toll-like receptors (TLR) and cytokines play a central role in the pathogen clearance as well as in pathological processes. Recently, we reported that TLR2, TLR4 and TLR9 are differentially modulated in injured livers from BALB/c and C57BL/6 (B6) mice during Trypanosoma cruzi infection. However, the molecular and cellular mechanisms involved in local immune response remain unclear.

Methodology/Principal Findings

In this study, we demonstrate that hepatic leukocytes from infected B6 mice produced higher amounts of pro-inflammatory cytokines than BALB/c mice, whereas IL10 and TGFβ were only released by hepatic leukocytes from BALB/c. Strikingly, a higher expression of TLR2 and TLR4 was observed in hepatocytes of infected BALB/c mice. However, in infected B6 mice, the strong pro-inflammatory response was associated with a high and sustained expression of TLR9 and iNOS in leukocytes and hepatic tissue respectively. Additionally, co-expression of gp91- and p47-phox NADPH oxidase subunits were detected in liver tissue of infected B6 mice. Notably, the pre-treatment previous to infection with Pam3CSK4, TLR2-agonist, induced a significant reduction of transaminase activity levels and inflammatory foci number in livers of infected B6 mice. Moreover, lower pro-inflammatory cytokines and increased TGFβ levels were detected in purified hepatic leukocytes from TLR2-agonist pre-treated B6 mice.

Conclusions/Significance

Our results describe some of the main injurious signals involved in liver immune response during the T. cruzi acute infection. Additionally we show that the administration of Pam3CSk4, previous to infection, can attenuate the exacerbated inflammatory response of livers in B6 mice. These results could be useful to understand and design novel immune strategies in controlling liver pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号