首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
J C Copin  Y Gasche  Y Li  P H Chan 《FASEB journal》2001,15(2):525-534
Mouse astrocytes deficient in the mitochondrial form of superoxide dismutase do not grow in culture under 20% atmospheric O2 levels. By flow cytometry, immunocytochemistry, and enzymatic analysis we have shown that the oxygen block of cell division is due to a decrease in the number of cells entering the S phase of the cell cycle and is concomitant with higher DNA oxidation and impairment of mitochondrial functions. Seeding the cells under 5% O2 until the cultures become confluent can circumvent this problem. An initial hypoxic environment increases the resistance of manganese superoxide dismutase-deficient astrocytes to superoxide radicals artificially produced by paraquat treatment, preserves respiratory activity, and allows normoxic division during a subsequent passage. DNA oxidation is then not higher than in wild-type control cells. However, the adaptation of the cells is not due to compensation by other enzymes of the antioxidant defense system and is specific to cells totally lacking manganese superoxide dismutase. Alteration of the phenotype by prior hypoxia exposure in the SOD2-deficient mutant provide a unique model to study adaptative mechanisms of cellular resistance to oxygen toxicity.  相似文献   

3.
The nursing rat pup exposed to hypoxia from birth exhibits ACTH-independent increases in corticosterone and renin/ANG II-independent increases in aldosterone. These increases are accompanied by significant elevation of plasma lipid concentrations in the hypoxic neonates. The purpose of the present study was to compare changes in the concentrations of specific fatty acid metabolites and lipid classes in serum and adrenal tissue from normoxic and hypoxic rat pups. We hypothesized that lipid alterations resulting from hypoxia may partly explain increases in steroidogenesis. Rats were exposed to normoxia or hypoxia from birth, and pooled serum and adrenal tissue from 7-day-old pups were subjected to metabolomic analyses. Hypoxia resulted in specific and significant changes in a number of fatty acid metabolites in both serum and the adrenal. Hypoxia increased the concentrations of oleic (18:1 n-9), eicosapentaenoic (EPA; 20:5 n-3), and arachidonic (20:4 n-6) acids in the triacylglyceride fraction of serum and decreased oleic and EPA concentrations in the cholesterol ester fraction. In the adrenal, hypoxia caused an increase in several n-6 fatty acids in the triacylglyceride fraction, including linoleic (18:2 n-6) and arachidonic acid. There was also an increase in the concentration of alpha-linolenic acid (18:3 n-3) in the triacylglyceride fraction of the hypoxic adrenal, along with an increase in linoleic acid concentration in the diacylglyceride fraction. We propose that specific changes in lipid metabolism in the adrenal, as a result of hypoxia, may partly explain the increased steroidogenesis previously observed. The mechanism responsible may involve alterations in cellular signaling and/or mitochondrial function. These cellular changes may be a mechanism by which the neonate can increase circulating adrenal steroids necessary for survival, therefore bypassing a relative insensitivity to normal stimuli.  相似文献   

4.
Simian virus 40 (SV40)-infected CV1 cells exposed to hypoxia show an inhibition of viral replication. Reoxygenation after several hours of hypoxia results in new initiations followed by a nearly synchronous round of SV40 replication. In this communication, we examined the effect of glucose on inhibition of viral DNA replication under hypoxia. We found that glucose stimulated SV40 DNA replication under hypoxia in two different ways. First, the rate of DNA synthesis, i.e. the fork propagation rate, increased. This effect seemed to be mediated by inhibition of mitochondrial respiration by glucose (Crabtree effect). Inhibition of mitochondrial respiration probably resulted in a higher intracellular oxygen concentration and an activation of oxygen-dependent ribonucleotide reductase, which provides the precursors for DNA synthesis. This glucose effect was consequently strongly dependent on the strength of hypoxia and the extent of intracellular respiration; hypoxic gassing with 10 ppm instead of 200-400 ppm O(2) or treatment of hypoxic cells with a mitochondrial uncoupler (carbonyl cyanide m-chlorophenylhydrazone) reduced the glucose effect on replication, whereas antimycin A, an inhibitor of respiration, increased it. The second effect of glucose concerned initiation, i.e. stimulation of unwinding of the viral origin. This effect was not influenced by the strength of hypoxia or the extent of cellular respiration and seemed, therefore, not to be mediated through a Crabtree effect. No evidence for a direct correlation between the cellular ATP concentration and the extent of SV40 replication under hypoxia was found. The effect of glucose on replication under hypoxia was not restricted to SV40-infected CV1 cells but was also detectable in HeLa cells. This suggests it to be a mechanism of more general validity.  相似文献   

5.
Hypoxia affects the biochemistry of mammalian cells and thus alters their sensitivity to subsequent chemo- and radiotherapy. When V79 Chinese hamster lung fibroblasts were grown under conditions of extreme hypoxia (less than 10 ppm O2) there was a significant shift in the membrane glycoprotein composition. Scanning electron microscopy revealed altered cell surface morphology including loss of pseudopodial projections. Experiments to determine changes in interfacial free energy of these cells using equilibrium two phase systems of poly(ethylene glycol) (PEG) and dextran were carried out. Test fluid droplets of the denser dextran-rich phase were formed on layers of cells in the PEG-rich phase as the bathing medium, and the contact angles the droplets made with the cell layers were measured from photomicrographs. The contact angles on cells in the plateau phase increased significantly with time of exposure to hypoxia, from 25 degrees (zero time) to 35 degrees (6 h) to 60 degrees (9 h). Contact angles on cells in the exponential phase increased from 80 degrees (zero time) to 150 degrees after 20 h of hypoxia. It appears that the altered contact angles reflect changes in cell surface hydrophobicity that may, in part, reflect alterations in the membrane glycoprotein composition.  相似文献   

6.
We have studied hypoxia-induced inactivation of cells from three established human cell lines with different p53 status. Hypoxia was found to induce apoptosis in cells expressing wild-type p53 (MCF-7 cells), but not in cells where p53 is either mutated (T-47D cells), or abrogated by expression of the HPV18 E6 oncoprotein (NHIK 3025 cells). Apoptosis was demonstrated by DNA fragmentation, using agarose gel electrophoresis of DNA and DNA nick end labeling (TUNEL). We demonstrate that extremely hypoxic conditions (<4 ppm O2) do not cause any change of expression in the p53 protein level in these three cell lines. In addition, the localization of p53 in MCF-7 cells was found exclusively in the nucleus in only some of the cells both under aerobic and hypoxic conditions. Furthermore, no correlation was found between the p53-expression level and whether or not a cell underwent apoptosis. Flow cytometric TUNEL analysis of MCF-7 cells revealed that initiation of apoptosis occurred in all phases of the cell cycle, although predominantly for cells in S phase. Apoptosis was observed only during a limited time window (i.e., ≈10 to ≈24 h) after the onset of extreme hypoxia. While 66% of the MCF-7 cells lost their ability to form visible colonies following 15 h exposure to extreme hypoxia, only ∼28% were induced to apoptosis, suggesting that ∼38% were inactivated by other death processes. Commitment to apoptotic cell death was observed in MCF-7 cells even for oxygen concentrations as high as 5000 ppm. Our present results indicate that the p53 status in these three tumor cell lines does not have any major influence on cell's survival following exposure to extremely hypoxic conditions, whereas following moderate hypoxia, cells expressing functional p53 enhanced their susceptibility to cell death. Taken together, although these results suggest that functional p53 might play a role in the induction of apoptosis during hypoxia, other factors seem to be equally important.  相似文献   

7.
Cellular oxygen consumption is a determinant of intracellular oxygen levels. Because of the high demand of mitochondrial respiration during insulin secretion, pancreatic β-cells consume large amounts of oxygen in a short time period. We examined the effect of insulin secretion on cellular oxygen tension in vitro. We confirmed that Western blotting of pimonidazole adduct was more sensitive than immunostaining for detection of cellular hypoxia in vitro and in vivo. The islets of the diabetic mice but not those of normal mice were hypoxic, especially when a high dose of glucose was loaded. In MIN6 cells, a pancreatic β-cell line, pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected under mildly hypoxic conditions. Inhibition of respiration rescued the cells from becoming hypoxic. Glucose stimulation decreased cellular oxygen levels in parallel with increased insulin secretion and mitochondrial respiration. The cellular hypoxia by glucose stimulation was also observed in the isolated islets from mice. The MIN6 cells overexpressing HIF-1α were resistant to becoming hypoxic after glucose stimulation. Thus, glucose-stimulated β-cells can become hypoxic by oxygen consumption, especially when the oxygen supply is impaired.  相似文献   

8.
Hypoxia induces various adoptive signaling in cells that can cause several physiological changes. In the present work, we have observed that exposure of bovine aortic endothelial cells (BAECs) to extreme hypoxia (1-5% O(2)) attenuates cellular respiration by a mechanism involving heat shock protein 90 (Hsp90) and endothelial nitric oxide (NO) synthase (eNOS), so that the cells are conditioned to consume less oxygen and survive in prolonged hypoxic conditions. BAECs, exposed to 1% O(2), showed a reduced respiration compared with 21% O(2)-maintained cells. Western blot analysis showed an increase in the association of Hsp90-eNOS and enhanced NO generation on hypoxia exposure, whereas there was no significant accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). The addition of inhibitors of Hsp90, phosphatidylinositol 3-kinase, and NOS significantly alleviated this hypoxia-induced attenuation of respiration. Thus we conclude that hypoxia-induced excess NO and its derivatives such as ONOO(-) cause inhibition of the electron transport chain and attenuate O(2) demand, leading to cell survival at extreme hypoxia. More importantly, such an attenuation is found to be independent of HIF-1alpha, which is otherwise thought to be the key regulator of respiration in hypoxia-exposed cells, through a nonphosphorylative glycolytic pathway. The present mechanistic insight will be helpful to understand the difference in the magnitude of endothelial dysfunction.  相似文献   

9.
We have investigated the effect of extreme, prolonged hypoxia on the radiosensitivity of EMT6/SF cells in vitro. As cells were kept hypoxic for 1-24 h, their radiosensitivity increased, but no further change was noted for hypoxic incubation beyond 24 h. Chronically hypoxic (45 h) cells were more radiosensitive than acutely hypoxic (1 h) cells by a factor of 1.43. When chronically hypoxic cells were re-aerated, the increased radiosensitivity persisted, although it was reduced. Misonidazole (MISO) radiosensitization was equally effective under conditions of acute and chronic hypoxia. In contrast, MISO, SR2555 and SR2508 were more cytotoxic in chronically hypoxic cultures than in acutely hypoxic cells. Measurements suggested that intracellular thiols may play an important role in the effects observed.  相似文献   

10.
11.
The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear. Thus, we have investigated their production under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions in slice preparations of the rat carotid body by using fluorescent indicators and confocal microscopy. NO-synthesizing enzymes were identified by immunohistochemistry and histochemistry, and the subcellular localization of the NO-sensitive indicator diaminofluorescein was determined by a photoconversion technique and electron microscopy. Glomus cells of the carotid body responded to hypoxia by increases in both ROS and NO production. The hypoxia-induced increase in NO generation required (to a large extent, but not completely) extracellular calcium. Glomus cells were immunoreactive to endothelial NO synthase but not to the neuronal or inducible isoforms. Ultrastructurally, the NO-sensitive indicator was observed in mitochondrial membranes after exposure to hypoxia. The data show that glomus cells respond to exposure to hypoxia by the enhanced production of both ROS and NO. NO production by glomus cells is probably mediated by endothelial NO synthase, which is activated by calcium influx. The presence of NO indicator in mitochondria suggests the hypoxic regulation of mitochondrial function via NO in glomus cells.  相似文献   

12.
We recently demonstrated that delta-opioid receptor (DOR) activation protects cortical neurons against glutamate-induced injury. Because glutamate is a mediator of hypoxic injury in neurons, we hypothesized that DOR is involved in neuroprotection during O2 deprivation and that its activation/inhibition may alter neuronal susceptibility to hypoxic stress. In this work, we tested the effect of opioid receptor activation and inhibition on cultured cortical neurons in hypoxia (1% O2). Cell injury was assessed by lactate dehydrogenase release, morphology-based quantification, and live/dead staining. Our results show that 1) immature neurons (days 4 and 6) were not significantly injured by hypoxia until 72 h of exposure, whereas day 8 neurons were injured after only 24-h hypoxia; 2) DOR inhibition (naltrindole) caused neuronal injury in both day 4 and day 8 normoxic cultures and further augmented hypoxic injury in these neurons; 3) DOR activation ([D-Ala2,D-Leu5]enkephalin) reduced neuronal injury in day 8 cultures after 24 h of normoxic or hypoxic exposure and attenuated naltrindole-induced injury with prolonged exposure; and 4) mu- or kappa-opioid receptor inhibition (beta-funaltrexamine or nor-binaltorphimine) had little effect on neurons in either normoxic or hypoxic conditions. Collectively, these data suggest that DOR plays a crucial role in neuroprotection in normoxic and hypoxic environments.  相似文献   

13.
The ultrastructure of some elements in the motor region of the cerebral cortex of the rat were studied after hypoxia. The experimental animals, after receiving intraperitoneal chloral hydrate anaesthesia, were placed in a chamber with a controlled supply of a mixture of 95% N2 and 5% O2. After 2- and 3-hour exposure to hypoxic conditions the animals were processed for electron optic study. Edematous mitochondria pith partial or total destruction of the mitochondrial matrix were observed. Some mitochondria were changed into large vacuolar formations. The granular endoplasmic reticulum of neurocytes was dilated and in the broad dilatation structures of lamellar shape were sporadically found. The Golgi complex contained vacuoles of different sizes and long cisterns. Hydrated astrocytes were visualized in the neuropil and perivascular astrocyte processes displayed edematous changes. In the group of animals exposed to hypoxia for 3 hours but processed only 24 hours after termination of hypoxia the same changes were observed yet their extent was considerably diminished. This finding indicates that changes induced by hypoxia tend to return to normal conditions.  相似文献   

14.
Cycling mammalian cells that are rendered extremely hypoxic (less than 4 ppm O2) tend to accumulate in a pre-DNA-synthesis stage. It is not clear whether or not this is the result of an active regulation by the cells. In the present study we have rendered cells, synchronized by mitotic selection, extremely hypoxic over a relatively long period of time (up to 48 h). We have recorded cell cycle progression during hypoxia as well as cell inactivation depending on where in the cell cycle the cells were located when the hypoxic treatment was started. Three main conclusions are drawn: 1 the cell cycle arrest in late-G1 is complete even during a long-lasting (24 h) hypoxic treatment: 2 while cells in early- and mid-S are completely arrested and quickly inactivated under hypoxic conditions, cells in late-S, G2 and mitosis are able to continue cell cycle progression and divide; 3 whether the cells are located in G2, mitosis or early-G1 at the onset of hypoxia, they were able to survive relatively long-lasting hypoxic treatment. The present results are in favour of the view that the pre-DNA-synthetic arrest induced by extreme hypoxia may function to rescue the cells from severely damaging effects that would appear if the cells were able to initiate DNA synthesis.  相似文献   

15.
Vascular ATP-sensitive potassium (KATP) channels have an important role in hypoxic vasodilation. Because KATP channel activity depends on intracellular nucleotide concentration, one hypothesis is that hypoxia activates channels by reducing cellular ATP production. However, this has not been rigorously tested. In this study we measured KATP current in response to hypoxia and modulators of cellular metabolism in single smooth muscle cells from the rat femoral artery by using the whole cell patch-clamp technique. KATP current was not activated by exposure of cells to hypoxic solutions (Po2 approximately 35 mmHg). In contrast, voltage-dependent calcium current and the depolarization-induced rise in intracellular calcium concentration ([Ca2+]i) was inhibited by hypoxia. Blocking mitochondrial ATP production by using the ATP synthase inhibitor oligomycin B (3 microM) did not activate current. Blocking glycolytic ATP production by using 2-deoxy-D-glucose (5 mM) also did not activate current. The protonophore carbonyl cyanide m-chlorophenylhydrazone (1 microM) depolarized the mitochondrial membrane potential and activated KATP current. This activation was reversed by oligomycin B, suggesting it occurred as a consequence of mitochondrial ATP consumption by ATP synthase working in reverse mode. Finally, anoxia induced by dithionite (0.5 mM) also depolarized the mitochondrial membrane potential and activated KATP current. Our data show that: 1) anoxia but not hypoxia activates KATP current in femoral artery myocytes; and 2) inhibition of cellular energy production is insufficient to activate KATP current and that energy consumption is required for current activation. These results suggest that vascular KATP channels are not activated during hypoxia via changes in cell metabolism. Furthermore, part of the relaxant effect of hypoxia on rat femoral artery may be mediated by changes in [Ca2+]i through modulation of calcium channel activity.  相似文献   

16.
Changes in respiratory frequencies with hypoxic or hyperoxic exposure were studied in: 12 normoxic control rats (N) born and raised in normoxic environment at sea level; 12 rats (A) born and raised in normoxic environment at sea level exposed to normobaric hypoxia (10% O2 in N2) as adults; 12 rats of first generation (G1) raised in the above mentioned hypoxic environment since a few hours after birth; 12 rats of third generation (G3) conceived and born in the hypoxic environment of hypoxic parents of second generation and maintained continuously under hypoxic conditions until their utilization. The response of A rats to 10% O2 and 7% O2 breathing was elevated (57% and 86% over air breathing). The mean respiratory frequency of A rats exposed to 7% O2 rose to a greater extent than did that of N rats. The G1 and G3 rats were less responsive to 7% O2 (64% and 37% over air breathing, respectively) than N and A rats; however, in G1 rats the exposure to 7% O2 produced a greater rise of frequency than in G3 rats. Furthermore A rats, G1 rats and G3 rats were less responsive to 97% O2 breathing (19%, 19% and 11% below air breathing, respectively). Comparing these data with previous findings we suggest that, with chronic exposure to hypoxia, changes in ventilatory response to hypoxia and hyperoxia occur in the following manner: I) loss of response to hypoxia if chronic exposure is begun in the immediate postnatal period; 2) degree of response to hypoxia or hyperoxia influenced by duration of chronic exposure.  相似文献   

17.
Prolonged hypoxia exerts profound effects on cell function, and has been associated with increased production of amyloid beta peptides (A beta Ps) of Alzheimer's disease. Here, we have investigated the effects of chronic hypoxia (2.5% O2, 24 h) on capacitative Ca2+ entry (CCE) in primary cultures of rat type-I cortical astrocytes, and compared results with those obtained in astrocytes exposed to A beta Ps. Chronic hypoxia caused a marked enhancement of CCE that was observed after intracellular Ca2+ stores were depleted by bradykinin application or by exposure to thapsigargin (1 microM). Exposure of cells for 24 h to 1 microM A beta P(1-40) did not alter CCE. Enhancement of CCE was not attributable to cell hyperpolarization, as chronically hypoxic cells were significantly depolarized as compared with controls. Mitochondrial inhibition [by FCCP (10 microM) and oligomycin (2.5 microg/mL)] suppressed CCE in all three cell groups, but more importantly there were no significant differences in the magnitude of CCE in the three astrocyte groups under these conditions. Similarly, the antioxidants melatonin and Trolox abolished the enhancement of CCE in hypoxic cells. Our results indicate that chronic hypoxia augments CCE in cortical type-I astrocytes, a finding which is not mimicked by A beta P(1-40) and appears to be dependent on altered mitochondrial function.  相似文献   

18.
Previous studies examining the role of mitochondria-derived reactive oxygen species (ROS) in hypoxic responses have been mainly conducted in isolated lungs and cultured pulmonary artery smooth muscle cells (PASMCs) using mitochondrial inhibitors, and yielded largely conflicting results. Here we report that in freshly isolated mouse PASMCs, which are devoid of the mixed responses from multi-types of cells in lungs and significant changes in gene expression in cultured cells, the mitochondrial electron transport chain (ETC) complex I, II, or III inhibitors blocked hypoxia-induced increases in intracellular ROS and Ca2+ concentration ([ROS]i and [Ca2+]i) without effects on their resting levels. Inhibition of the complex I plus II and/or III did not produce an additive effect. Glutathione peroxidase-1 (Gpx1) or catalase gene overexpression to enhance H2O2 removal remarkably reduced hypoxic increases in [ROS]i and [Ca2+]i, whereas Gpx1 gene deletion had the opposite effect. None of these genetic modifications changed the resting [ROS]i and [Ca2+]i. H2O2 at 51 microM caused a similar increase in DCF fluorescence ([ROS]i) as that by hypoxia, but only induced 33% of hypoxic increase in [Ca2+]i. Moreover, H2O2 (5.1 microM) reversed the inhibition of the hypoxia-induced increase in [Ca2+]i by rotenone. Collectively, our study using various mitochondrial inhibitors and genetic approaches demonstrates that in response to acute hypoxia, the mitochondrial ETC molecules prior to the complex III ubisemiquinone site act as a functional unit to increase the generation of ROS, particularly H2O2, which is important for, but may not fully cause, the hypoxic increase in [Ca2+]i in freshly isolated PASMCs.  相似文献   

19.
The effect of hypoxia on subsequent susceptibility of porcine pulmonary artery endothelial cells (PAEC) to hydrogen peroxide (H2O2) injury was studied. Preexposure of PAEC to hypoxia for 3 or more h significantly increased susceptibility to subsequent H2O2 challenge. Analysis of the activities of antioxidant enzymes and xanthine oxidase/dehydrogenase suggested that changes in these enzymes in hypoxic PAEC were not responsible for the increased susceptibility. However, hypoxia resulted in significant time-dependent decreases in total glutathione at 12 h or more. The rate of glutathione regeneration in diethylmaleate-treated PAEC and the rate of uptake of cystine and glycine were significantly lower during hypoxia. Hypoxia also caused depletion of ATP and NADPH levels in PAEC, but these did not occur until well after hypoxia-enhanced susceptibility to H2O2 injury was demonstrable. Alterations in glutathione levels and enhanced susceptibility were reversible when hypoxic PAEC were returned to normoxia. These results indicate that hypoxia increased the susceptibility to H2O2 injury by decreasing the ability of PAEC to maintain and regenerate cellular glutathione content in response to H2O2 challenge.  相似文献   

20.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号