首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Aminopeptidase M [EC 3.4.11.2] was purified 772-fold to homogeneity from the microsomal fraction of human liver, with a yield of 18.9%, by a combination of solubilization with 0.5% Triton X-100 and then 1 M urea and chromatography on columns of DEAE-cellulose, hydroxylapatite, Butyl-Toyopearl, and Sephacryl S-300. The purified enzyme had a molecular weight of 140,000 by SDS-polyacrylamide gel electrophoresis and of 280,000 by gel filtration on a column of TSK gel 2000 SW. It was reconstituted into proteoliposomes with asolectin, showing its amphiphilic nature. The aminopeptidase M from liver was found to be efficiently inhibited by bile acids. The enzyme was almost completely inhibited by chenodeoxycholic acid and 70-90% inhibited by cholic acid at a concentration of 6 mM. The extent of inhibition by conjugated and unconjugated bile acids was in the order: unconjugated greater than glycoconjugated greater than tauroconjugated bile acid, independent of the nature of the substrates used. The inhibition by the various bile acids was totally reversible. Further, it was immunochemically revealed that a considerable amount of liver aminopeptidase M was released into the bile duct. The role of the aminopeptidase M on the bile canalicular membrane and of the enzyme released in the bile duct is discussed in relation to the effects of bile acids.  相似文献   

3.
Malic enzyme of hyperthyroid rat liver   总被引:1,自引:0,他引:1  
  相似文献   

4.
We have found a novel enzyme that exclusively decomposes L-selenocysteine into L-alanine and H2Se in various mammalian tissues, and have named it selenocysteine lyase. The enzyme from pig liver has been purified to homogeneity. It has a molecular weight of approximately 85,000, and contains pyridoxal 5'-phosphate as a coenzyme. Its maximum reactivity is at about pH 9.0. Balance studies showed that 1 mol of selenocysteine is converted to equimolar amounts of alanine and H2Se. The following amino acids are insert: L-cysteine, L-serine, L-cysteine sulfinate, selenocysteamine, Se-ethyl-DL-selenocysteine, and L-selenohomocysteine. L-Cysteine (Ki, 1.0 mM) competes with L-selenocysteine (Km, 0.83 mM) to inhibit the enzyme reaction. The enzyme is the first proven enzyme that specifically acts on selenium compounds.  相似文献   

5.
Phosphatidate phosphatase (EC 3.1.3.4Y was purified 15- to 20-fold from the soluble fraction of rat liver. The purification procedure involved calcium phosphate gel adsorption and elution, ammonium sulfact precipitation, and molecular-sieve chromatography. For the enzyme assay, and aqueous dispersion of phosphatidate, rather than "membrane-bound" phosphatidate, was used as substrate. The partially purified enzyme depends almost entirely on the presence of Mg2+ for its activity. Morover, the activity of the enzyme is stimulated by phosphatidylcholine. The enzyme exhibits a high substrate specificity for phosphatidate. The apparent Km for phosphatidate is approximately 0.05 mM. The optimum pH is between 7.4 and 7.6. The enzyme is inhibited by fluoride and by p-chloromercuribenzoate. The subcellular distribution of phosphatidate phosphatase in rat liver was studied by assaying the activity of the enzyme in the presence of Mg2+ and phosphatidylcholine. In contrast ot the results of previous studies, most of the enzyme activity was found in the soluble fraction.  相似文献   

6.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   

7.
A purification procedure is reported for obtaining bovine liver dihydrofolate reductase in high yield and amounts of 100-200 mg. A key step in the procedure is the use of an affinity gel prepared by coupling pteroyl-L-lysine to Sepharose. The purified reductase has a specific activity of about 100 units/mg and is homogeneous as judged by analytical ultracentrifugation, polyacrylamide gel electrophoresis, and titration with methotrexate. The products of the first step of Edman degradation indicated a minimum purity of 79%. The reductase has a molecular weight of about 21500 on the basis of amino acid composition and 22100 +/- 300 from equilibrium sedimentation. It is not inhibited by antiserum to the Streptococcus faecium reductase (isoenzyme 2). Unlike the reductase of many other vertebrate tissues, the bovine enzyme is inhibited by mercurials rather than activated and it has a single pH optimum at both low and high ionic strength. However, the position of the pH optimum is shifted and the activity increased by increasing ionic strength. Automatic Edman degradation has been used to determine 34 of the amino-terminal 37 amino acid residues. Considerable homology exists between this region and the corresponding regions of the reductase from S. faecium and from Escherichia coli. This strengthens the idea that this region contributes to the structure of the binding site for dihydrofolate.  相似文献   

8.
Rapid purification and radioimmunoassay of cytosolic malic enzyme   总被引:1,自引:0,他引:1  
A very rapid and highly effective procedure has been devised for the isolation of homogeneous malic enzyme from rat liver cytosol. A combination of precipitation with 10 to 20% polyethylene glycol, ion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Procion Red HE-3B Agarose was used to prepare 3 to 4 mg of homogeneous malic enzyme from the livers of two rats in 18 h. In addition to introducing the advantages of simplicity, speed, and high yield (31%) the new method eliminates potentially denaturing steps (heat treatment, ethanol fractionation) and prolonged dialysis procedures used in other purification schemes. Malic enzyme purified by this new method was use to immunize rabbits. The resulting antibodies bound purified rat liver and mouse liver malic enzymes with very similar affinities and also avidly complexed cytosolic malic enzyme from two murine cell lines, 3T3-L1 preadipocytes and 3T3-C2 fibroblasts. When purified malic enzyme was incubated with lactoperoxidase, glucose oxidase and Na 125I 1.8 atoms of 125I were incorporated per molecule of enzyme with full retention of catalytic activity, subunit size, and immunoreactivity. The antiserum, the purified enzyme, and enzymatically iodinated 125I-malic enzyme were used to construct a sensitive, competitive binding radioimmunoassay for the measurement of malic enzyme mass in the range of 1 to 100 ng.  相似文献   

9.
Human red cell aldehyde dehydrogenase (ALDH) resembles the liver cytosolic isozyme in numerous physicochemical properties. This study was undertaken to establish the structural relationship between the erythrocyte and liver ALDH isozymes. The purified red cell ALDH was S-(14C)-carboxymethylated, and cleaved with trypsin. The tryptic digest was fractionated using Sephadex and reversed-phase chromatography. All peptides analyzed were identified within the liver cytosolic enzyme structure. In each case the sequence obtained corresponds exactly to a segment from the human liver cytosolic ALDH. Thus, the erythrocyte enzyme, by virtue of its chemical and structural identity with the liver cytosolic enzyme, may serve as a suitable peripheral enzyme model to understand the cause and mechanism of alcohol abuse-related changes in liver cytosolic ALDH that has been found to be reduced in alcoholics.  相似文献   

10.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

11.
An overview of the purification of an oligomeric enzyme, an extramitochondrial acetyl-coenzyme A hydrolase from rat liver, is presented. The enzyme has been purified to homogeneity using two successive size-exclusion chromatography runs, first for the monomeric and second for the oligomeric form of the enzyme. The sequential gel-filtration steps efficiently removed the contaminants of any molecular size, first of different size from that of the monomeric form of the enzyme (K(av)=0.47 on Superdex 200) and second of different size from that of the oligomeric form (K(av)=0.33), allowing us to purify the enzyme in high purity. This strategy provides an excellent model for purifying many other oligomeric proteins including key enzymes or allosteric enzymes regulating metabolism.  相似文献   

12.
A proclotting enzyme associated with the hemolymph coagulation system of limulus (Tachypleus tridentatus) was highly purified from the hemocyte lysate. The first step of purification was performed by chromatography of the lysate on a pyrogen-free dextran sulfate-Sepharose CL-6B column, which was essential for separation of the proclotting enzyme from its activator, named factor B. The following steps consisted of column chromatographies on DEAE-Sepharose CL-6B, Sephadex G-150, benzamidine-CH-Sepharose and Sephacryl S-300. Through these procedures, 1.4 mg of the purified material was obtained from 630 ml of the lysate and approximately 300-fold purification was achieved. The preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence and absence of 2-mercaptoethanol. The single-chain proclotting enzyme was a glycoprotein with an apparent molecular weight of 54,000, and no gamma-carboxyglutamic acid was detected. The proclotting enzyme was converted to its active form by purified factor B or by trypsin. The resulting clotting enzyme had a molecular weight of 54,000, consisting of a heavy chain of Mr = 31,000 and a light chain of Mr = 25,000. The serine active site of the clotting enzyme was found in the heavy chain. The chemical analyses of the isolated heavy and light chains indicated that the activation of the proclotting enzyme to its active form by factor B or trypsin is induced by a limited proteolysis, yielding two chains bridged by a disulfide linkage(s).  相似文献   

13.
Carbamylphosphate synthetase I from human liver was stabilized, purified, and partially characterized. The labile enzyme was stabilized in cell-free extracts by the presence of MgATP and dithiothreitol at pH 7.8. The stabilized enzyme was purified by a rapid procedure consisting of ion exchange chromatograhy and electrofocusing The native molecular weight of the enzyme was determined by gel filtration to be 190,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a monomeric molecular weight of 165,000. The isoelectric point of the purified enzyme was 6.05, and only one species of active enzyme was observed during electrofocusing of both purified enzyme preparations and crude liver homogenates. The enzyme exhibited a pH optimum of 7.8. The apparent Michaelis constants for NH4+, HCO3-, MgATP, and the activator, N-acetyl-L-glutamic acid, were 0.8, 6.7, 1.1, and 0.1 mM, respectively.  相似文献   

14.
15.
Alkaline phosphatase from human liver was purified to homogeneity. The purification procedure included solubilization with butanol, fractionation with acetone, and chromatography on concanavalin A-Sepharose, DEAE-cellulose, Sephadex G-200 and DEAE-Sephadex. Purity was established by standard and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The isoelectric point of the protein was determined to be 4.0. Sephadex-gel filtration gave a mol.wt. of 146000, although a higher value was obtained in the presence of 100mM-NaC1. The subunit mol.wt. 76700, was determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Neuraminidase treatment resulted in two enzyme-activity bands on isoelectric-focused gels with isoelectric points of 6.6 and 6.8. The desialylated enzyme gave only one protein band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with a subunit molecular weight indistinguishable from that of the non-neuraminidase-treated protein. The desialylated enzyme was more readily denatured by sodium dodecyl sulphate in the presence of mercaptoethanol than was the native enzyme.  相似文献   

16.
Coexpression of desmosomal proteins and vimentin has been reported in a specific mesenchymal phenotype. This study investigated the expression of vimentin-binding desmosomal proteins in human dental pulp fibroblasts (DPF) and odontoblasts. The dental pulp has no cells expressing desmocollin (DSC) 1-3, desmoglein (DSG) 1-3, junction plakoglobin (JUP), or desmoplakin (DPK) 1 and 2 except for odontoblasts expressing DPK. A confocal image by laser-scanning microscopy demonstrated the diffuse distribution of DPK in the cytoplasm throughout the odontoblast processes. In culture, the mRNA expression of JUP and DPK1, but not DSC1-3 and DSG1-3, was detected in all DPF clones tested and also in odontoblast-like cells (OB) expressing osteocalcin and dentin sialophosphoprotein mRNAs established in the differentiation medium. The DPF having the potential to differentiate into OB expressed vimentin, but not DPK before culturing in the differentiation medium, whereas OB expressed vimentin-binding DPK1. These results suggest that DPF usually expresses DPK1 mRNA, and that the DPK1 production and the bonding of vimentin to DPK1 occur in DPF with the differentiation into odontoblasts.  相似文献   

17.
S-Adenosyl-L-homocysteine hydrolase has been purified to apparent homogeneity from rat liver by means of affinity chromatography on 8-(3-aminopropylamino)adenosine linked to Sepharose. The purified enzyme was free from adenosine kinase and adenosine deaminase activities and was homogeneous on SDS/polyacrylamide-gel electrophoresis which gave a subunit mol.wt. of 47 000. The native enzyme showed some microheterogeneity on polyacrylamide-gel electrophoresis under increased-resolution conditions but was homogeneous on isoelectric focusing (pI 5.6). The molecular weight of the native enzyme was about 220 000 as judged by pore-gradient electrophoresis. The native enzyme bound adenosine tightly and showed Km values of 0.6 microM, 0.9 microM and 60 microM for adenosine, S-adenosyl-L-homocysteine and L-homocysteine respectively. The enzyme was rapidly inactivated when incubated in the presence of adenosine, S-adenosyl-L-homocysteine or several adenosine derivatives or analogues. Inactivation took place both at 0 and 37 degrees C. Freezing in the absence of glycerol resulted in the appearance of dissociation products of the oligomeric protein. Multimer formation was observed at low thiol concentrations.  相似文献   

18.
The 500-residue amino acid sequence of the subunit of mitochondrial human liver aldehyde dehydrogenase is reported. It is the first structure determined for this enzyme type from any species, and is based on peptides from treatments with trypsin, CNBr, staphylococcal Glu-specific protease, and hydroxylamine. The chain is not blocked (in contrast to that of the acetylated cytosolic enzyme form), but shows N-terminal processing heterogeneity over the first seven positions. Otherwise, no evidence for subunit microheterogeneities was obtained. The structure displays 68% positional identity with that of the corresponding cytosolic enzyme, and comparisons allow functional interpretations for several segments. A region with segments suggested to participate in coenzyme binding is the most highly conserved long segment of the entire structure (positions 194-274). Cys-302, identified in the cytosolic enzyme in relation to the disulfiram reaction, is also present in the mitochondrial enzyme. A new model of the active site appears possible and involves a hydrophobic cleft. Near-total lack of conservation of the N-terminal segments may reflect a role of the N-terminal region in signaling the transport of the mitochondrial protein chains. Non-conservation of interior regions may reflect the differences between the two enzyme forms in subunit interactions, explaining the lack of heterotetrameric molecules. The presence of some internal repeat structures is also noted as well as apparently general features of differences between cytosolic and mitochondrial enzymes.  相似文献   

19.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号