共查询到20条相似文献,搜索用时 9 毫秒
1.
Tamura N Konishi S Iwaki S Kimura-Someya T Nada S Yamaguchi A 《The Journal of biological chemistry》2001,276(23):20330-20339
Bacterial Tn10-encoded metal-tetracycline/H(+) antiporter was the first found drug exporter and has been studied as a paradigm of antiporter-type major facilitator superfamily transporters. Here the 400 amino acid residues of this protein were individually replaced by cysteine except for the initial methionine. As a result, we could obtain a complete map of the functionally or structurally important residues. In addition, we could determine the precise boundaries of all the transmembrane segments on the basis of the reactivity with N-ethylmaleimide (NEM). The NEM binding results indicated the presence of a transmembrane water-filled channel in the transporter. The twelve transmembrane segments can be divided into three groups; four are totally embedded in the hydrophobic interior, four face a putative water-filled channel along their full length, and the remaining four face the channel for half their length, the other halves being embedded in the hydrophobic interior. These three types of transmembrane segments are mutually arranged with a 4-fold symmetry. The competitive binding of membrane-permeable and -impermeable SH reagents in intact cells indicates that the transmembrane water-filled channel has a thin barrier against hydrophilic molecules in the middle of the transmembrane region. Inhibition and stimulation of NEM binding in the presence of tetracycline reflects the substrate-induced protection or conformational change of the Tn10-encoded metal-tetracycline/H(+) antiporter. The mutations protected from NEM binding by tetracycline were mainly located around the permeability barrier in the N-terminal half, suggesting the location of the substrate binding site. 相似文献
2.
Each amino acid in putative transmembrane helix VI and its flanking regions, from Ser-156 to Thr-185, of a Cys-free mutant of the Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) was individually replaced by Cys. All of the cysteine-scanning mutants showed a normal level of tetracycline resistance except for the S156C mutant, which showed moderate resistance, indicating that there is no essential residue located in this region. All 20 mutants from S159C to W178C showed no reactivity with N-ethylmaleimide (NEM), whereas the mutants of the flanking regions from S156C to H158C and F179C to T185C were highly or moderately reactive with NEM. These results indicate that like transmembrane helices III and IX, the transmembrane helix VI comprising residues Ser-159-Trp-178 is totally embedded in the hydrophobic environment. 相似文献
3.
The tetracycline resistance protein (TetA) endoded by transposon Tn10 mediates the efflux of divalent cation-tetracycline chelating complexes [Yamaguchi, A., Udagawa, T. and Sawai, T. (1990) J. Biol. Chem. 265, 4809-4813]. It was confirmed that protons were antiported with the complexes through an electrically-neutral process because the antiport consumed delta pH but not delta psi. The quantitative relationship between delta pH and delta pTC determined by a flow-dialysis method clearly indicated a 1:1 stoichiometry of the monocationic metal-tetracycline/H+ exchange. 相似文献
4.
Iwaki S Tamura N Kimura-Someya T Nada S Yamaguchi A 《The Journal of biological chemistry》2000,275(30):22704-22712
Cysteine-scanning mutants as to putative transmembrane segments 4 and 5 and the flanking regions of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) were constructed. All mutants were normally expressed. Among the 57 mutants (L99C to I155C), nine conserved arginine-, aspartate-, and glycine-replaced ones exhibited greatly reduced tetracycline resistance and almost no transport activity, and five conserved glycine- and proline-replaced mutants exhibited greatly reduced tetracycline transport activity in inverted membrane vesicles despite their high or moderate drug resistance. All other cysteine-scanning mutants retained normal drug resistance and normal tetracycline transport activity except for the L142C and I143C mutants. The transmembrane (TM) regions TM4 and TM5 were determined to comprise 20 amino acid residues, Leu-99 to Ile-118, and 17 amino acid residues, Ala-136 to Ala-152, respectively, on the basis of N-[(14)C]ethylmaleimide ([(14)C]NEM) reactivity. The NEM reactivity patterns of the TM4 and TM5 mutants were quite different from each other. TM4 could be divided into two halves, that is, a NEM nonreactive periplasmic half and a periodically reactive cytoplasmic half, indicating that TM4 is tilted toward a water-filled transmembrane channel and that only its cytoplasmic half faces the channel. On the other hand, NEM-reactive mutations were observed periodically (every two residues) along the whole length of TM5. A permeability barrier for a membrane-impermeable sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, was present in the middle of TM5 between Leu-142 and Gly-145, whereas all the NEM-reactive mutants as to TM4 were not accessible to 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, indicating that the channel-facing side of TM4 is located inside the permeability barrier. Tetracycline protected the G141C mutant from the NEM binding, whereas the other mutants in TM4 and TM5 were not protected by tetracycline. 相似文献
5.
We reported that the positive charge of Arg(70) is mandatory for tetracycline transport activity of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) (Someya, Y., and Yamaguchi, A. (1996) Biochemistry 35, 9385-9391). Arg(70) may function through a charge-pairing with a negatively charged residue in close proximity. Therefore, we mutated Asp(66) and Asp(120), which are only two negatively charged residues located close to Arg(70) in putative secondary structure of TetA(B) and highly conserved throughout transporters of the major facilitator superfamily. Site-directed mutagenesis studies revealed that Asp(66) is essential, but Asp(120) is important for TetA(B) function. Surprisingly, when Asp(120) was replaced by a neutral residue, the R70A mutant recovered tetracycline resistance and transport activity. There was no such effect in the Asp(66) mutation. The charge-exchanged mutant, R70D/D120R, also showed significant drug resistance and transport activity (about 50% of the wild type), although the R70D mutant had absolutely no activity, and the D120R mutant retained very low activity (about 10% of the wild type). Both the R70C and D120C mutants were inactivated by N-ethylmaleimide. Mercuric ion (Hg(2+)), which gives a positive charge to a SH group of a Cys residue through mercaptide formation, had an opposite effect on the R70C and D120C mutants. The activity of the R70C mutant was stimulated by Hg(2+); however, on the contrary, the D120C mutant was partially inhibited. On the other hand, the R70C/D120C double mutant was almost completely inactivated by Hg(2+), probably because the side chains at positions 70 and 120 are bridged with Hg(2+). The close proximity of positions 70 and 120 were confirmed by disulfide cross-linking formation of the R70C/D120C double mutant when it was oxidized by copper-(1,10-phenanthroline). These results indicate that the positive charge of Arg(70) requires the negative charge of Asp(120) for neutralization, probably for properly positioning transmembrane segments in the membrane. 相似文献
6.
Mouse monoclonal antibodies were prepared using His-tagged Tn10-encoded metal-tetracycline/H+ antiporter [TetA(B)His] as an antigen. From them, those reacting equally with His-tagged and wild-type TetA(B) were selected and named TCL-1. Cysteine-scanning mutants were used to determine the TCL-1 binding site on the TetA(B) protein. First, 12 Cys mutants of TetA(B) in which one residue in a protruding loop region was replaced by cysteine were constructed. Western blot analysis revealed the binding of TCL-1 to all of these Cys-mutants except for R186C. Then, we constructed 13 cysteine-scanning mutants, F179C to T191C. Among them, eight mutants, F179C to T182C, N184C, and T189C to T191C, exhibited TCL-1 binding, whereas the other five, K183C, T185C, R186C, D187C, and N188C, exhibited no or lower TCL-1 binding. These results clearly indicate that the sequence recognized by TCL-1 is 183Lys-X-Thr-Arg-Asp-Asn188 in the central loop region of TetA(B). TCL-1 is the first reported antibody that binds to a region other than the C-terminus of TetA(B), and the recognized amino acid sequence was identified. 相似文献
7.
Kimura-Someya T Iwaki S Konishi S Tamura N Kubo Y Yamaguchi A 《The Journal of biological chemistry》2000,275(25):18692-18697
Putative transmembrane helices (TM) 1 and 11 in the metal-tetracycline/H(+) antiporter are predicted to be close to each other on the basis of disulfide cross-linking experiments of the double-cysteine mutants in the periplasmic loop regions (Kubo, Y., Konishi, S., Kawabe, T., Nada, S., and Yamaguchi, A. (2000) J. Biol. Chem. 275, 5270-5274). In this study, each amino acid from Asn-2 to Gly-44 in the putative TM1 and loop1-2 regions or that from Ser-328 to Gly-366 in TM11 and its flanking regions was individually replaced with cysteine. With respect to the TM1 region, 10 mutants, from T5C to L14C, were all not reactive with N-ethylmaleimide (NEM), and from D15C to I22C, NEM-reactive and non-reactive mutations periodically appeared every two residues. Three mutants, M23C to V25C, were all NEM-reactive, but the degree of the latter two mutants was very low. Seven mutants, from L26C to E32C, were all highly reactive with NEM. Therefore, the region of TM1 is composed of the 21 amino acid residues from Thr-5 to Val-25. It is a partially amphiphilic helix, that is, the N-terminal (cytoplasmic) half is embedded in the hydrophobic interior, and the C-terminal (periplasmic) half faces a water-filled channel. With respect to TM11, nine mutants, from S328C to G336C, and six mutants, from L361C to G366C, were all reactive with NEM. On the other hand, out of the 24 mutants, from L337C to S360C, 17 were not reactive with NEM, and the 7 NEM-reactive mutants were scattered, indicating that this region is a transmembrane segment. The 7 residues from Val-347 to Phe-353 including Pro-350 formed a central hydrophobic core, and the 7 NEM-reactive mutations were periodically distributed in its flanking regions, indicating that both ends of TM11 face a water-filled channel. Ala-354 is located at about 1/3 of the length from the periplasmic end of TM11. Disulfide cross-linking experiments on double-cysteine mutants having the combination of A354C and a cysteine-scanning mutation in the loop1-2 region indicated that loop1-2 is very flexible and close to the periplasmic end of TM11. Tetracycline prevented the cross-linking formation between the periplasmic ends of TM1 and TM11; however, it did not affect the cross-linking between loop1-2 and TM11, indicating that the substrate-induced conformational change involves a shift in the relative locations of TM1 and TM11. 相似文献
8.
Membrane topology of the metal-tetracycline/H+ antiporter TetA(K) from Staphylococcus aureus. 下载免费PDF全文
A series of fusions to the reporter proteins alkaline phosphatase and beta-galactosidase have been constructed in the predicted periplasmic and cytoplasmic loops of TetA(K), a protein responsible for efflux-mediated tetracycline resistance in Staphylococcus aureus. The results support a topological model of 14 transmembrane segments for TetA(K). 相似文献
9.
Of the 16 acidic amino acid residues located in the hydrophilic region of the metal-tetracycline/H+ antiporter of transposon Tn10, five glutamic acids and three aspartic acids are conserved among the tetracycline/H+ antiporters of Gram-negative bacteria. When these conserved acidic residues were each replaced by a neutral polar residue, glutamine or asparagine, only the Asp66 substitution mutants completely lost their transport activity. The substitution of Glu274, Asp120, Glu181, or Asp38 caused significant reduction of the transport activity, whereas the substitution of the other three residues had no detectable effect on the activity. These findings led to the conclusion that only Asp66 is essential for the transport function. 相似文献
10.
Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon Tn10. Histidine 257 plays an essential role in H+ translocation. 总被引:5,自引:0,他引:5
A Yamaguchi K Adachi T Akasaka N Ono T Sawai 《The Journal of biological chemistry》1991,266(10):6045-6051
The transposon Tn10-encoded tetA gene product is a metal-tetracycline/proton antiporter (Yamaguchi, A., Udagawa, T., and Sawai, T. (1990) J. Biol. Chem. 265, 4809-4813). Its tetracycline transport activity was inhibited by a histidine-specific reagent, diethyl pyrocarbonate. Among five histidine residues in this antiporter, only His257 is located in the putative transmembrane helices. Thus, His257 was replaced by Glu or Asp. Inverted vesicles containing the Glu257 and Asp257 mutant proteins showed only 20 and 10% of the tetracycline uptake of wild-type vesicles, respectively. In contrast to wild-type vesicles, the mutant vesicles showed no tetracycline-dependent proton translocation, indicating that the mutant proteins had lost the tetracycline/H+ antiport activity. The significant 60Co2+ uptake without proton translocation by the mutant vesicles also confirmed that the mutant carriers act as uniporters of a metal-tetracycline complex. The metal-tetracycline uniport by the mutant proteins was not inhibited by diethyl pyrocarbonate, indicating that His257 is the only histidine residue essential for proton translocation. These mutant proteins conferred about half-level resistance to tetracycline, probably due to their catalyzing downhill efflux of a metal-tetracycline complex out of the cells. 相似文献
11.
A Yamaguchi T Akasaka N Ono Y Someya M Nakatani T Sawai 《The Journal of biological chemistry》1992,267(11):7490-7498
Three conserved aspartyl residues located in the putative transmembrane helices in the Tn10-encoded metal-tetracycline/H+ antiporter were replaced by Asn, Lys, or Glu with oligonucleotide-directed site-specific mutagenesis. Replacement of Asp84 or Asp15 by Asn or Lys caused a severe defect in tetracycline transport activity, however, the Glu84 and Glu15 mutants retained 150 and 40% of the wild type activity, respectively, indicating the critical role of the negative charge. The increase in the activity of the Glu84 mutant was due to an increase in the affinity for the substrate. H+/tetracycline coupling was intact in these mutants, including Asn and Lys mutants. On the other hand, all of the Asp285-substitution mutants showed a severe defect in tetracycline transport activity and a complete lack of tetracycline-coupled H+ transport. However, since in vivo tests showed the tetracycline resistance for the Glu285 mutant, a negative charge in position 285 plays some role in maintaining the possible down-hill and/or low affinity efflux of accumulated tetracycline from intact cells. Similar work was done for Asp365, and here the Asn and Glu mutants showed decreased but high activity, while the Lys mutant was only marginally active (5%), indicating that a negative charge is not so demanding in position 365, possibly because it is not in the membrane. 相似文献
12.
Putative transmembrane helix 3 of the tetracycline/H+ antiporter encoded by a transposon, Tn10, contains four serine residues, Ser-77, Ser-82, Ser-91 and Ser-92. Each of these serine residues was replaced by site-directed mutagenesis. Of these four serine residues, Ser-77 was important for the transport function, and a bulky side chain at position 91 hindered substrate translocation, whereas Ser-82 and Ser-92 did not play any role. Ser-77 and Ser-91 are on the same vertical stripe, that includes the essential Asp-84, on the hydrophilic side of putative helix 3. These observations suggest that helix 3 is part of the tetracycline translocation channel across the membrane. 相似文献
13.
Dynamics of repressor-operator recognition: the Tn10-encoded tetracycline resistance control 总被引:11,自引:0,他引:11
Binding of the Tet repressor to nonspecific and specific DNA leads to quenching of the Tet fluorescence by approximately 22% and approximately 35%, respectively. This effect is used for a direct, quantitative characterization of the binding equilibria and dynamics involved in the recognition of the operator by its repressor. From the dependence of the nonspecific binding constant on the ion concentration, it is concluded that nonspecific binding is almost completely driven by the entropy change resulting from the release of three to four Na+ ions from the double helix upon protein binding. Formation of the specific complex is driven by a higher entropy term resulting from the release of seven to eight Na+ ions and in addition by a free energy term of -33 kJ/mol from nonelectrostatic interactions, which are attributed to the specific contacts. The dynamics of the repressor-operator recognition are resolved by stopped-flow measurements at various salt concentrations and for different DNA chain lengths into two separate steps. The first step follows a second-order mechanism and results in an intermediate complex associated with formation of about three to four electrostatic contacts between protein and DNA; apparently, this complex is equivalent to the nonspecific complex. The existence of an intermediate is also indicated by experiments in mixed Na+-Mg2+ buffers, which can be described with high accuracy by competition of Mg2+ and protein. The intermediate complex is formed at a rate of 3 X 10(8) M-1 s-1 and is converted in the second reaction step to the specific complex with a rate constant of 6 X 10(4) s-1, which is almost independent of the salt concentration. Our interpretation and the parameters obtained from our model are confirmed by competition of nonspecific DNA with operator DNA for repressor binding. The observed maximal rate constant of 3 X 10(8) M-1 s-1 is very close to theoretical predictions for the association without a sliding mechanism. The very small dependence of the observed rate constants on the chain length shows that the Tet repressor is not able to slide over any substantial distance even at low salt concentrations. The question of a potential contribution from sliding under our experimental conditions is critically discussed. The absence of sliding in the case of the Tet repressor under physiological conditions is compared with the high sliding efficiency of the lac repressor and is discussed with respect to possible molecular mechanisms of sliding in relation to biological function. 相似文献
14.
Several members of the CLC family are secondary active anion/proton exchangers, and not passive chloride channels. Among the exchangers, the endosomal ClC-5 protein that is mutated in Dent''s disease shows an extreme outward rectification that precludes a precise determination of its transport stoichiometry from measurements of the reversal potential. We developed a novel imaging method to determine the absolute proton flux in Xenopus oocytes from the extracellular proton gradient. We determined a transport stoichiometry of 2 Cl−/1 H+. Nitrate uncoupled proton transport but mutating the highly conserved serine 168 to proline, as found in the plant NO3−/H+ antiporter atClCa, led to coupled NO3−/H+ exchange. Among several amino acids tested at position 168, S168P was unique in mediating highly coupled NO3−/H+ exchange. We further found that ClC-5 is strongly stimulated by intracellular protons in an allosteric manner with an apparent pK of ∼7.2. A 2:1 stoichiometry appears to be a general property of CLC anion/proton exchangers. Serine 168 has an important function in determining anionic specificity of the exchange mechanism. 相似文献
15.
Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon, Tn10. The role of the conserved dipeptide, Ser65-Asp66, in tetracycline transport 总被引:12,自引:0,他引:12
A Yamaguchi N Ono T Akasaka T Noumi T Sawai 《The Journal of biological chemistry》1990,265(26):15525-15530
The transposon Tn10-encoded tetracycline resistance protein functions as a metal-tetracycline/H+ antiporter (Yamaguchi, A., Udagawa, T., and Sawai, T. (1990) J. Biol. Chem. 265, 4809-4813). The Ser65-Asp66 dipeptide is conserved in all known tetracycline antiporter proteins and is an important target for site-directed mutagenesis. When Asp66 was replaced by Asn, the transport activity was completely lost, whereas when it was replaced by Glu, the activity was reduced to 10% of the wild-type level, indicating that a negative charge at position 66 is essential for tetracycline transport. Replacement of Ser65 by Cys or Ala, in contrast, caused only a minor change in tetracycline transport activity. However, the Cys65 mutant antiporter was sensitive to sulfhydryl reagents. Complete inactivation of the Cys65 antiporter by N-ethylmaleimide was not prevented by the substrate. A less bulky reagent, methyl methanethiosulfonate, caused partial inactivation of the Cys65 antiporter without changing its affinity to the substrate. These results indicate that a region including the dipeptide plays an important role in metal-tetracycline transport except for substrate binding. It may act as a gate which opens on the charge-charge interaction between Asp66 and the metal-tetracycline. 相似文献
16.
Shane Austin Ronald Mekis Sami E M Mohammed Mariafrancesca Scalise WenAn Wang Michele Galluccio Christina Pfeiffer Tamara Borovec Katja Parapatics Dijana Vitko Nora Dinhopl Nicolas Demaurex Keiryn L Bennett Cesare Indiveri Karin Nowikovsky 《EMBO reports》2022,23(12)
Mitochondrial Ca2+ ions are crucial regulators of bioenergetics and cell death pathways. Mitochondrial Ca2+ content and cytosolic Ca2+ homeostasis strictly depend on Ca2+ transporters. In recent decades, the major players responsible for mitochondrial Ca2+ uptake and release have been identified, except the mitochondrial Ca2+/H+ exchanger (CHE). Originally identified as the mitochondrial K+/H+ exchanger, LETM1 was also considered as a candidate for the mitochondrial CHE. Defining the mitochondrial interactome of LETM1, we identify TMBIM5/MICS1, the only mitochondrial member of the TMBIM family, and validate the physical interaction of TMBIM5 and LETM1. Cell‐based and cell‐free biochemical assays demonstrate the absence or greatly reduced Na+‐independent mitochondrial Ca2+ release in TMBIM5 knockout or pH‐sensing site mutants, respectively, and pH‐dependent Ca2+ transport by recombinant TMBIM5. Taken together, we demonstrate that TMBIM5, but not LETM1, is the long‐sought mitochondrial CHE, involved in setting and regulating the mitochondrial proton gradient. This finding provides the final piece of the puzzle of mitochondrial Ca2+ transporters and opens the door to exploring its importance in health and disease, and to developing drugs modulating Ca2+ exchange. 相似文献
17.
The region including the conserved Ser65-Asp66 dipeptide in the tetracycline/H+ antiporter (TET) encoded by transposon Tn10 is thought to play a gating role (Yamaguchi, A., Ono, N., Akasaka, T., Noumi, T., and Sawai, T. (1990) J. Biol. Chem. 265, 15525-15530). The dipeptide is in putative interhelix loop2-3, which also includes the conserved sequence motif, GXXXXRXGRR, found in all TET proteins and sugar/H+ symporters. Through the combination of localized random and site-directed mutagenesis, each residue in loop2-3 was replaced. Among 10 residues in putative loop2-3, the important residues, of which substitution resulted in significant reduction or complete loss of the transport activity, were Gly62, Asp66, Gly69, and Arg70. The defect in the transport activity of the Gly62 and Gly69 substitution mutants corresponded to the steric hindrance by the substituents as to the putative beta-turn structure of the peptide backbone containing these glycines. Of 3 conserved Arg residues, the replacement of only Arg70 caused complete loss of the activity except for replacement with Lys, indicating the importance of a positive charge at this position, which is similar to the essentiality of a negative charge at Asp66. A charge-neutralizing intra-loop salt bridge between Asp66 and Arg70 was not likely because the double mutant in which Asp66 and Arg70 were replaced with asparagine and leucine, respectively, showed no transport activity. A triple mutant with only one positive charge at Arg70 in this loop showed about half the wild-type activity, indicating that the polycationic nature of the loop was not critical for the activity. Cys mutants as to the unessential residues in the loop were modifiable with N-ethylmaleimide, except for the Met64----Cys and Arg71----Cys mutants; however, the modification of only the Ser65----Cys mutant caused significant inhibition of the transport activity, indicating that position 65 is a unique position in the structure of loop2-3. 相似文献
18.
19.
The Na+/H+ antiporter of alkaliphilic Bacillus sp. 总被引:1,自引:0,他引:1
The Na+/H+ antiporter, which appears to predominantly contribute to the alkaliphily of Bacillus halodurans C-125, was studied in an alkali-sensitive mutant of this strain and a transformant with restored alkaliphily. The alkali-sensitive
mutant, strain 38154, which has lost the ability to grow above pH 9.5, was found to lack electro-genic Na+/H+ antiport activity driven by ΔΨ (membrane potential, interior negative), and it showed defective regulation of intracellular
pH under alkaline conditions. On the other hand, a transformant carrying a 2.0-kb DNA fragment from the parental genome that
complemented this defect was able to maintain an intracellular pH lower than that of the external milieu, and it was found
to have recovered the Na+/H+ antiport activity driven by ΔΨ. Sequence analyses found that a 5.1-kb DNA region contained four open reading frames (ORF-1
to ORF-4). Direct sequencing of the corresponding region in mutant 38154 revealed a G-to-A substitution, which resulted in
an amino acid substitution from Gly-393 to Arg in the putative ORF-1 product. It has been recently found that a region homologous
to the DNA fragment responsible for the alkaliphily of strain C-125 exists in the genomes of Bacillus subtilis, Sinorhizobium (Rhizobium) meliloti, and Staphylococcus aureus. These homologues are present as a cluster of seven ORFs in each case. The shaA gene product of B. subtilis shows significant similarity to the ORF-1 product of strain C-125. Disruption of the shaA gene resulted in a decrease in Na+/H+ antiport activity, and growth of the shaA-disrupted strain was impaired when the external Na+ concentration was increased. We conclude that the shaA gene encodes a Na+/H+ antiporter, which plays an important role in extrusion of cytotoxic Na+.
Received: May 29, 2000 / Accepted: July 18, 2000 相似文献
20.
In plants and fungi, vacuolar transporters help remove potentially toxic cations from the cytosol. Metal/H(+) antiporters are involved in metal sequestration into the vacuole. However, the specific transport properties and the ability to manipulate these transporters to alter substrate specificity are poorly understood. The Arabidopsis thaliana cation exchangers, CAX1 and CAX2, can both transport Ca(2+) into the vacuole. There are 11 CAX-like transporters in Arabidopsis; however, CAX2 was the only characterized CAX transporter capable of vacuolar Mn(2+) transport when expressed in yeast. To determine the domains within CAX2 that mediate Mn(2+) specificity, six CAX2 mutants were constructed that contained different regions of the CAX1 transporter. One class displayed no alterations in Mn(2+) or Ca(2+) transport, the second class showed a reduction in Ca(2+) transport and no measurable Mn(2+) transport, and the third mutant, which contained a 10-amino acid domain from CAX1 (CAX2-C), showed no reduction in Ca(2+) transport and a complete loss of Mn(2+) transport. The subdomain analysis of CAX2-C identified a 3-amino acid region that is responsible for Mn(2+) specificity of CAX2. This study provides evidence for the feasibility of altering substrate specificity in a metal/H(+) antiporter, an important family of transporters found in a variety of organisms. 相似文献