首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied hypoxia-induced cell cycle arrest in human cells where the retinoblastoma tumour suppressor protein (pRb) is either functional (T-47D and T-47DHU-res cells) or abrogated by expression of the HPV18 E7 oncoprotein (NHIK 3025 cells). We have previously found that pRb is dephosphorylated and rebound in the nucleus in T-47D cells arrested in S-phase during hypoxia and that this binding is protracted even following re-oxygenation. In the present study, however, we show that the long-lasting arrest following re-oxygenation induced by pRb-binding in the cell nuclei may be overruled by an elevated level of ribonucleotide reductase (RNR). This seems to create a forced DNA-synthesis, uncoordinated with cell division, which induces endoreduplication of the DNA. The data indicate that the cells initiating endoreduplication continue DNA-synthesis until all DNA is replicated once and then may start cycling and cell division with a doubled DNA-content. Corresponding data on the pRb-incompetent NHIK 3025-cells show similar endoreduplication in these. Thus, the data indicate that endoreduplication of DNA following re-oxygenation may come, either as a result of hypoxic arrest of DNA-synthesis when pRb-function is absent in the cells, or if it is overruled by increased RNR. The present study further shows that pRb not only protects the culture by arresting most of the cells that are exposed to extreme hypoxia in S-phase, but also increases cell survival by means of increased clonogenic ability of these cells. Interestingly, however, cells having an elevated level of RNR have equally high survival as wild-type cells following 20 h extreme hypoxia. If RNR-overruling of pRb-mediated arrest following re-oxygenation results in an unstable genome, this may therefore represent a danger of oncogenic selection as the protective effect of pRb on cell survival seems to be maintained.  相似文献   

2.
3.
We have studied the effect of cell anchorage on the human cell line NHIK 3025 in vitro, to see whether the growth regulating effect of cell anchorage primarily affected DNA division cycle or mass growth cycle. It was found that cell to cell anchorage had the same effect on cell cycle progression as anchorage to a solid surface, which indicates that it is anchorage per se and not cell shape that is important for growth control in NHIK 3025 cells. When NHIK 3025 cells were grown without attachment to a solid surface, both G1 and cell cycle duration was prolonged by 6 h, which means that the prolonged cell cycle was due to a prolonged G1. During the first part of the cell cycle the rate of protein synthesis and degradation was constant, and at the same level in cells grown with and without attachment. This means that the prolonged G1 was not due to a reduced protein accumulation or mass growth. Towards the end of the cell cycle protein accumulation was reduced. This effect was either due to a size control before cell division or a secondary effect of the prolonged G1. We therefore conclude that cell anchorage as a growth regulator primarily affects the DNA/cell division cycle.  相似文献   

4.
We have studied hypoxia-induced inactivation of cells from three established human cell lines with different p53 status. Hypoxia was found to induce apoptosis in cells expressing wild-type p53 (MCF-7 cells), but not in cells where p53 is either mutated (T-47D cells), or abrogated by expression of the HPV18 E6 oncoprotein (NHIK 3025 cells). Apoptosis was demonstrated by DNA fragmentation, using agarose gel electrophoresis of DNA and DNA nick end labeling (TUNEL). We demonstrate that extremely hypoxic conditions (<4 ppm O2) do not cause any change of expression in the p53 protein level in these three cell lines. In addition, the localization of p53 in MCF-7 cells was found exclusively in the nucleus in only some of the cells both under aerobic and hypoxic conditions. Furthermore, no correlation was found between the p53-expression level and whether or not a cell underwent apoptosis. Flow cytometric TUNEL analysis of MCF-7 cells revealed that initiation of apoptosis occurred in all phases of the cell cycle, although predominantly for cells in S phase. Apoptosis was observed only during a limited time window (i.e., ≈10 to ≈24 h) after the onset of extreme hypoxia. While 66% of the MCF-7 cells lost their ability to form visible colonies following 15 h exposure to extreme hypoxia, only ∼28% were induced to apoptosis, suggesting that ∼38% were inactivated by other death processes. Commitment to apoptotic cell death was observed in MCF-7 cells even for oxygen concentrations as high as 5000 ppm. Our present results indicate that the p53 status in these three tumor cell lines does not have any major influence on cell's survival following exposure to extremely hypoxic conditions, whereas following moderate hypoxia, cells expressing functional p53 enhanced their susceptibility to cell death. Taken together, although these results suggest that functional p53 might play a role in the induction of apoptosis during hypoxia, other factors seem to be equally important.  相似文献   

5.
The mechanism by which all-trans retinoic acid (ATRA) leads to a G(1) arrest of the cell cycle remains unclear. We show here that the decrease in D-type cyclin levels observed following ATRA treatment correlates with an increase in the rate of cyclin D1 ubiquitylation in both T-47D and MCF-7 breast cancer cell lines. However, MCF-7 cells are more resistant to ATRA than T-47D cells indicating that cyclin D1 degradation is not sufficient for ATRA-mediated arrest. We found a striking difference between these cells in that while ATRA induces an elevation in the cdk inhibitor p27 in T-47D cells, this is not observed in the ATRA-resistant MCF-7 cells. Furthermore, we demonstrate that ATRA promotes the ubiquitylation of Skp2, an F-box protein that targets p27 for degradation. Moreover, overexpression of Skp2 in T-47D cells prevents accumulation of p27 and promotes resistance to ATRA. In addition, overexpression of cyclin D1 in T-47D cells also promotes ATRA resistance. We found that the mechanism of ATRA-induced ubiquitylation of cyclin D1 and Skp2 is independent of CUL-1 expression and that ATRA can rescue cyclin D1 degradation in the uterine cell line SK-UT-1, where D-type cyclins are stabilized due to a specific defect in proteolysis. These data suggest that ATRA induces a novel pathway of ubiquitylation and that the degradation of the F-box protein Skp2 is the mechanism underlying p27 accumulation and cyclin E-cdk2 inactivation following ATRA treatment.  相似文献   

6.
In mammalian cells DNA damage activates a checkpoint that halts progression through S phase. To determine the ability of nitrating agents to induce S-phase arrest, mouse C10 cells synchronized in S phase were treated with nitrogen dioxide (NO(2)) or SIN-1, a generator of reactive nitrogen species (RNS). SIN-1 or NO(2) induced S-phase arrest in a dose- and time-dependent manner. As for the positive controls adozelesin and cisplatin, arrest was accompanied by phosphorylation of ATM kinase; dephosphorylation of pRB; decreases in RF-C, cyclin D1, Cdc25A, and Cdc6; and increases in p21. Comet assays indicated that RNS induce minimal DNA damage. Moreover, in a cell-free replication system, nuclei from cells treated with RNS were able to support control levels of DNA synthesis when incubated in cytosolic extracts from untreated cells, whereas nuclei from cells treated with cisplatin were not. Induction of phosphatase activity may represent one mechanism of RNS-induced arrest, for the PP1/PP2A phosphatase inhibitor okadaic acid inhibited dephosphorylation of pRB; prevented decreases in the levels of RF-C, cyclin D1, Cdc6, and Cdc25A; and bypassed arrest by SIN-1 or NO(2), but not cisplatin or adozelesin. Our studies suggest that RNS may induce S-phase arrest through mechanisms that differ from those elicited by classical DNA-damaging agents.  相似文献   

7.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:8,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

8.
9.
The growth fraction, the cell cycle time, and the duration of the individual cell cycle phases were determined as a function of distance from the surface of multicellular spheroids of the human cell line NHIK 3025. the techniques employed were percentage of labelled mitoses and labelling index measurements after autoradiography and flow cytometric measurements of DNA histograms. to separate cell populations from the different parts of the spheroid, fractionated trypsinization was employed. The results were compared with corresponding values in NHIK 3025 cell populations grown as monolayer cultures. While practically all cells in exponentially growing monolayer populations are proliferating, the growth fraction was between 0.6 and 0.7 in the outer parts of the spheroid. the inner region was mainly occupied by a necrotic mass. the proliferating fraction of the recognizable cells in the inner region was slightly below 0.5. the mean cell cycle time of NHIK 3025 cells in monolayer culture is 18 hr. the mean cell cycle time of proliferating cells in the periphery of the spheroid was 30 hr, compared to 41 hr in the inner region (150 μm from the spheroid surface). All phases of the cell cycle were prolonged compared to populations of exponentially growing monolayer cells. Within each part of the spheroid the distribution of cell cycle times was considerably broadened compared with monolayer populations.  相似文献   

10.
11.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

12.
Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.  相似文献   

13.
The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.  相似文献   

14.
15.
Requirements for cell cycle arrest by p16INK4a   总被引:12,自引:0,他引:12  
Analysis of tumor-derived mutations has led to the suggestion that p16INK4a, cyclin D1, cdk4, and the retinoblastoma protein (pRB) are components of a regulatory pathway that is inactivated in most tumor cells. Cell cycle arrest induced by p16INK4a, an inhibitor of cyclin D-dependent kinases, requires pRB, and it has been proposed that this G1 arrest is mediated by pRB-E2F repressor complexes. By comparing the properties of primary mouse embryonic fibroblasts specifically lacking pRB-family members, we find that pRB is insufficient for a p16INK4a-induced arrest. In addition to pRB, a second function provided by either p107 or p130, two pRB-related proteins, is required for p16INK4a to block DNA synthesis. We infer that p16INK4a-induced arrest is not mediated exclusively by pRB, but depends on the nonredundant functions of at least two pRB-family members.  相似文献   

16.
It has been reported that the human cell line NHIK 3025 has a specific cytoplasmic glucocorticoid receptor. When these cells were exposed to glucocorticoids, the cell cycle time was prolonged. Cells, synchronized by mitotic selection, were subjected to the synthetic glucocorticoid dexamethasone throughout the cell cycle. Only cells exposed in the first half of G1 phase had a lengthened cell cycle time. Most of the prolongation was also located within the G1 phase. The dexamethasone growth inhibition was reversible and could be detected only in the cell cycle where the cells were exposed to the steroid. DNA-histograms of asynchronous cells were recorded by flowcytometry at various times after steroid exposure. These histograms also showed G1 phase sensitivity and G1 phase prolongation after exposure to dexamethasone. Our results thus indicate that these cells have a dexamethasone-sensitive restriction point in mid-G1 phase of the cell cycle.  相似文献   

17.
18.
19.
Although it is evident that BCR-ABL can rescue cytokine-deprived hematopoietic progenitor cells from cell cycle arrest and apoptosis, the exact mechanism of action of BCR/ABL and interleukin (IL)-3 to promote proliferation and survival has not been established. Using the pro-B cell line BaF3 and a BaF3 cell line stably overexpressing BCR-ABL (BaF3-p210), we investigated the proliferative signals derived from BCR-ABL and IL-3. The results indicate that both IL-3 and BCR-ABL target the expression of cyclin Ds and down-regulation of p27(Kip1) to mediate pRB-related pocket protein phosphorylation, E2F activation, and thus S phase progression. These findings were further confirmed in a BaF3 cell line (TonB.210) where the BCR-ABL expression is inducible by doxycyclin and by using the drug STI571 to inactivate BCR-ABL activity in BaF3-p210. To establish the functional significance of cyclin D2 and p27(Kip1) expression in response to IL-3 and BCR-ABL expression, we studied the effects of ectopic expression of cyclin D2 and p27(Kip1) on cell proliferation and survival. Our results demonstrate that both cyclin D2 and p27(Kip1) have a role in BaF3 cell proliferation and survival, as ectopic expression of cyclin D2 is sufficient to abolish the cell cycle arrest and apoptosis induced by IL-3 withdrawal or by BCR-ABL inactivation, while overexpression of p27(Kip1) can cause cell cycle arrest and apoptosis in the BaF3 cells. Furthermore, our data also suggest that cyclin D2 functions upstream of p27(Kip1), cyclin E, and cyclin D3, and therefore, plays an essential part in integrating the signals from IL-3 and BCR-ABL with the pRB/E2F pathway.  相似文献   

20.
Mukherji A  Janbandhu VC  Kumar V 《FEBS letters》2008,582(7):1111-1116
Chemotherapeutic agents are well known to induce growth arrest of cancerous cells by inducing DNA damage/replicational stress and engaging cellular apoptotic machinery. Our studies on hydroxyurea (HU) recognized cyclin D1 destabilization as the initiator of growth arrest at G(1)/S-phase independent of other cell cycle regulators. Cyclin D1 degradation was associated with its phosphorylation at Thr286 by glycogen synthase kinase-3beta and inactivation of Akt kinase. Overexpression of the cyclin D1(T286A) mutant, or constitutively active Akt, conferred stability to cyclin D1 and helped bypass cell cycle arrest. Thus, growth arrest by HU seems to involve destabilization of cyclin D1 in addition to its well-established role as ribonucleotide reductase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号