首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   

2.
Zinc fertilizer placement affects zinc content in maize plant   总被引:1,自引:0,他引:1  

Background and aims

Adequate zinc (Zn) in maize (Zea mays L.) is required for obtaining Zn-enriched grain and optimum yield. This study investigated the impact of varying Zn fertilizer placements on Zn accumulation in maize plant.

Methods

Two pot experiments with same design were conducted to investigate the effect of soil Zn heterogeneity by mixing ZnSO4·7H2O (10 mg Zn kg?1 soil on an average) in 10–15, 0–15, 25–30, 0–30, 30–60 and 0–60 cm soil layers on maize root growth and shoot Zn content at flowering stage in experiment-1, and assessing effects on grain Zn accumulation at mature stage in experiment-2.

Results

In experiment-1, Zn placements created a large variation in soil DTPA-Zn concentration (0.3–29.0 mg kg?1), which induced a systemic and positive response of root growth within soil layers of 0–30 cm; and shoot Zn content was increased by 102 %–305 % depending on Zn placements. Supply capacity of Zn in soil, defined as sum of product of soil DTPA-Zn concentration and root surface area at different soil layers, was most related to shoot Zn content (r?=?0.82, P?<?0.001) via direct and indirect effects according to path analysis. In experiment-2, Zn placements increased grain Zn concentration by up to 51 %, but significantly reduced the grain Zn harvest index from 50 % by control to about 30 % in average.

Conclusion

Matching the distribution of soil applied Zn with root by Zn placement was helpful to maximize shoot Zn content and grain Zn concentration in maize.  相似文献   

3.

Background and aims

Crop biofortification programs require fast, accurate and inexpensive methods of identifying nutrient dense genotypes. This study investigated energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn), iron (Fe) and selenium (Se) concentrations in whole grain wheat.

Methods

Grain samples were obtained from existing biofortification programs. Reference Zn, Fe and Se concentrations were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) and/or inductively coupled plasma mass spectrometry (ICP-MS). One set of 25 samples was used to calibrate for Zn (19–60?mg?kg–1) and Fe (26–41?mg?kg–1), with 25 further samples used to calibrate for Se (2–31?mg?kg–1 ). Calibrations were validated using an additional 40–50 wheat samples.

Results

EDXRF limits of quantification (LOQ) were estimated as 7, 3 and 2?mg?kg–1 for Zn, Fe, and Se, respectively. EDXRF results were highly correlated with ICP-OES or -MS values. Standard errors of EDXRF predictions were ±2.2?mg Zn kg–1, ±2.6?mg Fe kg–1, and ±1.5?mg Se kg–1.

Conclusion

EDXRF offers a fast and economical method for the assessment of Zn, Fe and Se concentration in wheat biofortification programs.  相似文献   

4.

Background and aims

Microbe-assisted phytoremediation is particularly effective for organic pollutants. The leguminous shrub Cytisus striatus (Hill) Rothm. has been proposed as a candidate species for the rhizoremediation of hexachlorocyclohexane (HCH)-contaminated sites. The aim of this study was to improve the performance of this species using microbial inoculants.

Methods

C. striatus was grown in substrates contaminated with 0, 10 and 35 mg HCH kg?1 for 8 weeks. Plants were either not inoculated (NI), or inoculated with the endophyte Rhodococcus erythropolis ET54b and the HCH-degrader Sphingomonas sp. D4 (isolated from a HCH-contaminated soil) on their own or in combination (ET, D4 and ETD4).

Results

Inoculation with both bacterial strains (ETD4) resulted in decreased HCH phytotoxicity and improved plant growth. HCH-exposed plants inoculated with ETD4 presented a 120–160 % increase in root, and 140–160 % increase in shoot biomass, and led to a decrease in the activities of enzymes involved in anti-oxidative defence. APOD activity was reduced by up to 37 % in shoot tissues and 25 % in root tissues, and corresponding activities of SOD were reduced by up to 35 % and 30 %. HCH dissipation was enhanced in the presence of C. striatus but no significant effect of microbial inoculants was observed.

Conclusions

Inoculating C. striatus with this combination of bacterial strains is a promising approach for the remediation of HCH-contaminated sites.  相似文献   

5.

Background and aims

Rice (Oryza sativa L.) and pearl millet (Pennisetum glaucum L.) biofortification breeding programs require accurate and convenient methods to identify nutrient dense genotypes. The aim of this study was to investigate energy-dispersive X-ray fluorescence spectrometry (EDXRF) for the measurement of zinc (Zn) and iron (Fe) concentration in whole grain rice and pearl millet.

Methods

Grain samples were obtained from existing biofortification breeding programs. Reference Zn and Fe concentrations obtained by inductively-coupled plasma-optical emission spectroscopy (ICP-OES) were used to calibrate the EDXRF instrument. Calibration was performed with 24 samples and separate calibrations were developed for rice and pearl millet. To validate calibrations, EDXRF analyses were conducted on an additional 40 samples of each species.

Results

EDXRF results were highly correlated with ICP-OES values for both Zn and Fe in both species (r2?=?0.79 to 0.98). EDXRF predicted Zn and Fe in rice to within 1.9 and 1.6?mg?kg?1 of ICP-OES values, and Zn and Fe in pearl millet to within 7.6 and 12.5?mg?kg?1 of ICP-OES values, at a 95% confidence level.

Conclusion

EDXRF offers a convenient, economical tool for screening Zn and Fe concentration in rice and pearl millet biofortification breeding programs.  相似文献   

6.

Aims

Despite our current understanding of plant nitrogen (N) uptake and soil N dynamics in arable systems, the supply and demand of N are infrequently matched as a result of variable seasonal and soil conditions. Consequently, inefficiencies in N utilisation often lead to constrained production and can contribute to potential environmental impacts. The aim of this study was to examine the influence of plant residue quality (C/N ratio) and extent of residue incorporation into soil on temporal changes in soil mineral N and the associated plant N uptake by wheat in the semi-arid agricultural production zone of Western Australia.

Methods

Oat (Avena sativa); lupin (Lupinus angustifolius) and field pea (Pisum sativum) were incorporated into a Red-Brown Earth using varying degrees of mechanical disturbance (0 to 100% residue incorporated). Soil samples for inorganic N (NO 3 ? and NH 4 + ) profiles (0?C50?cm), microbial biomass-C (0?C50?cm) and plant N uptake were taken throughout the growing season of the subsequent wheat (Triticum aestivum) crop. Grain yield and yield components were determined at harvest.

Results

Despite observed treatment effects for plant residue type and soil disturbance, fluctuations in inorganic N were more readily influenced by seasonal variability associated with wet-dry cycles. Treatment effects resulting from residue management and extent of soil disturbance were also more readily distinguished in the NO 3 ? pool. The release of N from crop residues significantly increased (p?=?0.05) with greater soil-residue contact which related to the method of incorporation; the greater the extent of soil disturbance, the greater the net supply of inorganic N. Differences in microbial biomass-C were primarily associated with the type of plant residue incorporated, with higher microbial biomass generally associated with legume crops. No effect of residue incorporation method was noted for microbial biomass suggesting little effect of soil disturbance on the microbial population in this soil.

Conclusions

Despite differences in the magnitude of N release, neither crop type nor incorporation method significantly altered the timing or pattern of N release. As such asynchrony of N supply was not improved through residue or soil management, or through increased microbial biomass in this semi-arid environment. N fluxes were primarily controlled by abiotic factors (e.g. climate), which in this study dominated over imposed agricultural management practices associated with residue management.  相似文献   

7.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

8.

Background

Endophytic diazotrophic bacteria colonize several non-leguminous plants and promote plant growth. Different mechanisms are involved in bacteria-induced plant growth promotion, including biological nitrogen fixation (BNF), mineral solubilization, production of phytohormones, and pathogen biocontrol. Herbaspirillum seropedicae is a broad-host-range endophyte that colonizes sugarcane, rice, wheat, sorghum, and maize, and has been used as a biofertilizer. Contrasting results between greenhouse and field experiments have prompted efforts to improve the consistency of the plant response to microbial stimulation.

Aims

The aim of this study was to evaluate the effect of the presence of humic substances on inoculation of maize (Zea mays L.) with H. seropedicae.

Methods

Two experiments were conducted: one in the greenhouse using sand and nutrient solution and the other a field trial in soil with low natural fertility and to which was applied N in the form of urea (50 kg ha?1). In the greenhouse, pre-emerging seeds were inoculated with a solution of H. seropedicae (109 cells mL?1) in the presence of humic substances isolated from vermicompost (10, 20, or 30 mg C?L?1); in the field trial, bacteria combined with humate were added as a foliar spray (450 L?ha?1).

Results

At early stages (7 and 45 days old) in the greenhouse, the treatment activated plant metabolism including enhancement of plasma membrane H+-ATPase activity, alteration of sugar and N metabolism, and greater net photosynthesis. The number of viable bacterial cells was higher in root tissues when inoculation was in the presence of soluble humic substances. Foliar application of endophytic diazotrophic bacteria and humic substances increased maize grain production 65 % under field conditions. These results show a promising use of humic substances to improve the benefit of endophytic diazotrophic inoculation.  相似文献   

9.

Aim

This study aimed at predicting how sub-alpine coniferous ecosystems respond to global changes in the Eastern Tibetan Plateau by understanding soil microbial communities and activities, as well as variation in the quality and quantity of soil organic matter.

Methods

An experiment was conducted to examine soil microbial communities and their related soil processes in rhizospheric soil of two coniferous species that were exposed to two levels of temperature (unwarmed and infrared heater warming) and two levels of nitrogen (unfertilized and 25 g N m?2 a?1) from April 2007.

Results

Four-year night warming alone slightly affected the phospholipid fatty acid contents of the microbial community. However, the combination of nitrogen addition and soil warming significantly affected soil microbial composition while reducing the biomass of major microbial groups and the activities of most enzymes, especially in Abies faxoniana plots. The combination of warming and nitrogen addition increased soil labile C and N pools in Picea asperata plots and was beneficial for soil recalcitrant C, as well as for labile and total C and N pools in A. faxoniana plots.

Conclusion

Results indicated that future warming will slightly affect soil microbial communities and their related soil processes. However, warming combined with high nitrogen deposition will significantly constrain soil microbial biomass and enzyme activities, consequently increasing soil C and N pools in sub-alpine coniferous forests of this region.  相似文献   

10.

Aims

We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.

Methods

Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9?months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO 3 ? -N and NH 4 + -N) was assessed every 2?months.

Results

Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.

Conclusion

Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.  相似文献   

11.

Aim

The objective of this study was to develop a remediation strategy for soil co-contaminated with decabromodiphenyl ether (BDE-209) and heavy metals (Cd, Pb and Zn) using co-plantation of the hyperaccumulator plant (Sedum alfredii) with tall fescue (Festuca arundinaceae) associated with a BDE degrader (Bacillus cereus strain JP12).

Methods

A 120-day remediation experiment was conducted under greenhouse conditions. S. alfredii and tall fescue were grown in monoculture and intercropped in artificially contaminated soil. Plant biomass, concentration of polybrominated diphenyl ethers, density of soil bacteria, soil enzyme activity, and the physiological profile of the soil microbial community were determined.

Results and discussion

Inoculation with JP12 significantly increased BDE-209 dissipation in soil. Phytoextraction of metals was also enhanced by JP12 inoculation due to the improved plant growth. Planting of tall fescue significantly enhanced BDE-209 dissipation as compared to that in the bare soil because of the increased soil microbial activity. Tall fescue showed higher Pb phytoextraction efficiency than S. alfredii, but Pb was principally retained in the roots of tall fescue. BDE-209 dissipation and metal phytoextraction were highest when co-planting S. alfredii with tall fescue inoculated with strain JP12. Pyrosequencing analysis revealed that the inoculated JP12 could functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil.

Conclusions

Co-planting of S. alfredii with tall fescue combined with BDE-degrading bacterial strain JP12 is promising for remediation of soil co-contaminated with BDE-209 and metals.  相似文献   

12.

Background and aims

The selective inoculation of specific hydrocarbon-degrading microbes into the plant rhizosphere offers a useful means for remediating hydrocarbon-contaminated soils. The effect of inoculating a seed-borne filamentous fungus (Lewia sp.) on hydrocarbon removal by Festuca arundinacea and its growth was studied on perlite (model soil) and soil, both spiked with hydrocarbons.

Methods

A hydrocarbon mixture (1,500 mg kg?1) of two polycyclic aromatic hydrocarbons (PAH), phenanthrene and pyrene, blended with hexadecane (1.0:0.5:0.5 weight) was used. Greenhouse experiments were carried out for 45 days. Inoculated and non-inoculated plants were grown in dark cylindrical glass pots containing perlite or soil.

Results

Inoculation with Lewia sp. stimulated (100 %) root growth in spiked perlite. Inoculated plants showed higher phenanthrene removal (100 %) compared to non-inoculated plants in perlite and soil. Pyrene removal by inoculated plants was 37-fold higher than that by non-inoculated plants in perlite; in soil, pyrene removal by inoculated plants (97.9 %) differed significantly from that of non-inoculated plants (91.4 %). Accumulation of pyrene in roots (530.9 mg kg?1 of dry roots) was promoted in perlite.

Conclusions

Our results demonstrate that Lewia sp. (endophytic fungus) improved the efficiency of PAH removal by F. arundinacea, on both perlite and soil, stimulating pyrene accumulation in roots.  相似文献   

13.
Fayez Raiesi 《Plant and Soil》2012,351(1-2):161-175

Background and Aims

Land abandonment might be an alternative management for restoring soil conditions and C from prolonged cultivation and agricultural practices. In the present study, the influence of 18–22?years of land abandonment on soil properties, C dynamics and microbial biomass was evaluated in closely situated wheat and alfalfa farmlands, and abandoned lands on calcareous soils, Central Iran.

Methods

Soil properties of the 0–15 and 15–30?cm depths from abandoned lands were compared to those from conventionally cultivated lands (i.e., continuous wheat–fallow and alfalfa–wheat rotation) common in calcareous soils of Central Zagros Mountains.

Results

Soil bulk density in the 0–15 and 15–30?cm layers decreased significantly while total porosity increased significantly in abandoned lands. Generally, soil aggregate stability tended to increase within the abandoned fields owing to increased water-stable macro-aggregates. Soil organic C (OC) contents (g kg?1) and pools (Mg ha?1) in the 0–15?cm soil layer increased significantly in abandoned lands compared with cultivated lands, with no effect in the 15–30?cm soil layer after 18–22?years of land abandonment, suggesting the restoration of C is pronounced in the upper 0–15?cm soil depth . The total C accumulation in abandoned lands was 7.0?Mg?C?ha?1 for the entire sampling depth (0–30?cm) over the 18–22?years of land abandonment, which was 26% greater relative to cultivated lands. Carbon mineralization (Cmin) followed a trend similar to organic C, whereas C turnover (Cmin/OC ratio) was slightly greater in wheat fields. However, soil microbial biomass C (MBC) did not vary considerably among the three land uses.

Conclusions

In brief, improvements, albeit slowly, in soil properties of the top layer with the cessation of cultivation indicated that land abandonment may result in enhanced soil C sequestration, and would maintain fertility and productivity of the farmlands of semi-arid climates.  相似文献   

14.

Background and aims

A critical soil mineral nitrogen concentration (Nmin) for guiding fertilizer application and maximizing maize grain yield is needed.

Methods

A three-year field experiment with three N regimes, unfertilized (N0), optimized N management (Opt.) and conventional N practice (Con.) was performed in maize.

Results

The mean soil Nmin in 0–60 cm soil profile for N0, Opt. and Con. treatments was 2.0, 6.7 and 8.9 mg?kg–1 at V8–VT growth stages and 2.2, 6.1 and 11.2 mg?kg–1 on average over the whole growth season, respectively. Correspondingly, the soil N supplying capacity (soil Nmin content?+?fertilizer N) of the three N treatments was smaller, identical or greater than the plant N accumulation at different growth stages. The Opt. treatment had significantly higher N use efficiency, N recovery efficiency and N partial factor productivity compared with the Con. treatment, while it did not cause maize yield loss.

Conclusions

Compared with the insensitivity of the critical shoot N dilution curve to excessive N application, soil Nmin showed strong response to all treatments. We propose a minimum of soil Nmin of 6.1 mg?kg–1 at the sowing–V8, 6.7 mg?kg–1 at the V8–VT, and 5.5 mg?kg–1 at the VT–R6 growing stages with an average of about 6 mg?kg–1 of soil Nmin in the 0–60 soil depth for maximizing maize yield and N use efficiency in northern China. To maintain this critical Nmin value over the whole growth period, N topdressing at V8 and V12 stages was recommended.  相似文献   

15.

Aims

Responses of typical wetland plant Acorus tatarinowii to diesel stress were investigated to provide basis of ecological monitoring system and phytoremediation for diesel-contaminated wetland.

Methods

Greenhouse experiments were established to determine the germinability of seedlings, hydrogen peroxide in leaves, and DNA damage in roots exposed to a range of potentially phytotoxic diesel.

Results

The presence of diesel did not benefit the growth of A. tatarinowii. The germination ratio and germination rate decreased with the increase of diesel concentration, both the lowest value appeared when the concentration of diesel was 10,000 mg?kg?1. The lowest diesel concentration (2,000 mg?kg?1) in the soil significantly reduced the length, average diameter, and projected area of root, especially on the stress of the higher diesel concentration (4,000, 8,000, and 10,000 mg?kg?1). Furthermore, H2O2 concentration in leaves rose with the increasing concentration of diesel. However, no DNA oxidative damage to root was observed in our experiment.

Conclusions

Diesel exposure significantly inhabited the seed germination, root elongation, and seedlings growth of A. tatarinowii. Diesel stress caused the accumulation of H2O2 in the leaves of A. tatarinowii.  相似文献   

16.

Aims

There are few studies on the interactive effect of salinity and sodicity in soils exposed to drying and wetting cycles. We conducted a study to assess the impact of multiple drying and wetting on microbial respiration, dissolved organic carbon and microbial biomass in saline and saline-sodic soils.

Methods

Different levels of salinity (EC1:5 1.0 or 2.5) and sodicity (SAR?<?3 or 20) were induced by adding NaCl and CaCl2 to a non-saline/non-sodic soil. Finely ground wheat straw residue was added at 20?g?kg?1 as substrate to stimulate microbial activity. The constant moist (CM) treatment was kept at optimum moisture content for the length of the experiment. The drying and rewetting (DW) treatments consisted of 1 to 3 DW cycles; each DW cycle consisted of 1?week drying after which they were rewet to optimum moisture and then maintained moist for 1?week.

Results

Drying reduced respiration more strongly at EC2.5 than with EC1.0. Rewetting of dry soils produced a flush in respiration which was greatest in the soils without salt addition and smallest at high salinity (EC2.5) suggesting better substrate utilisation by microbes in soils without added salts. After three DW events, cumulative respiration was significantly increased by DW compared to CM, being 24% higher at EC1.0 and 16% higher at EC2.5 indicating that high respiration rates after rewetting may compensate for the low respiration rates during the dry phase. The respiration rate per unit MBC was lower at EC2.5 than at EC1.0. Further, the size of the flush in respiration upon rewetting decreased with each ensuing DW cycle being 50–70% lower in the third DW cycle than the first.

Conclusions

Both salinity and sodicity alter the effect of drying and rewetting on soil carbon dynamics compared to non-saline soils.  相似文献   

17.

Background and Aims

Zn imported into developing cereal grains originates from either de novo Zn uptake by the roots or remobilization of Zn from vegetative tissues. The present study was focused on revealing the quantitative importance of the two pathways for grain Zn loading and how their relative contribution varies with the overall plant Zn status.

Methods

The stable isotope 67Zn was used to trace Zn uptake and remobilization fluxes in barley (Hordeum vulgare L.) plants growing in hydroponics at 0.1?μM (low Zn), 1.5?μM (medium Zn) or 5?μM Zn (high Zn). When grain development reached 15?days after pollination the Zn source was changed to an enriched 67Zn isotope and plants were harvested after 6 to 48?h. Zn concentrations and isotope ratios were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).

Results

Plants with low Zn status absorbed 3-fold more Zn than plants with medium or high Zn status when roots were exposed to an external concentration of 1.5?μM 67Zn. Stems and ears were the primary recipients of the de novo incorporated Zn with preferential allocation to the developing grains over time. The leaves received in all cases a very small proportion (<5?%) of the newly absorbed Zn and the proportion did not increase over time. Zn fluxes derived from uptake and remobilization were almost equal in plants with low Zn status, while at high Zn status remobilization delivered 4 times more Zn to the developing grains than did root Zn uptake.

Conclusions

Stable isotopes in combination with ICP-MS provided a strong tool for quantification of Zn fluxes in intact plants. The importance of Zn remobilization compared to de novo root absorption of Zn increased with increasing plant Zn status. Very little de novo absorbed Zn was translocated to the leaves during generative growth stages.  相似文献   

18.

Background and aims

Recent studies have shown that tree-based intercropping (TBI) systems support a more diverse soil microbial community compared to conventional agricultural systems. However, it is unclear whether differences in soil microbial diversity between these two agricultural systems have a functional effect on crop growth.

Methods

In this study, we used a series of greenhouse experiments to test whether crops respond differently to the total soil microbial community (Experiment 1) and to arbuscular mycorrhizal (AM) fungal communities alone (Experiment 2) from conventionally monocropped (CM) and TBI systems.

Results

The crops had a similar growth response to the total soil microbial communities from both cropping systems. However, when compared to sterilized controls, barley (Hordeum vulgare) and canola (Brassica napus) exhibited a negative growth response to the total soil microbial communities, while soybean (Glycine max) was unaffected. During the AM fungal establishment phase of the second experiment, ‘nurse’ plants had a strong positive growth response to AM fungal inoculation, and significantly higher biomass when inoculated with AM fungi from the CM system compared to the TBI system. Soybean was the only crop species to exhibit a significant positive growth response to AM fungal inoculation. Similar to the total soil microbial communities, AM fungi from the two cropping systems did not differ in their effect on crop growth.

Conclusion

Overall, AM fungi from both cropping systems had a positive effect on the growth of plants that formed a functional symbiosis. However, the results from these experiments suggest that negative effects of non-AM fungal microbes are stronger than the beneficial effects of AM fungi from these cropping systems.  相似文献   

19.
We obtained soil samples from geographically diverse switchgrass (Panicum virgatum L.) and sorghum (Sorghum bicolor L.) crop sites and from nearby reference grasslands and compared their edaphic properties, microbial gene diversity and abundance, and active microbial biomass content. We hypothesized that soils under switchgrass, a perennial, would be more similar to reference grassland soils than sorghum, an annual crop. Sorghum crop soils had significantly higher NO3 ? -N, NH4 + -N, SO4 2? -S, and Cu levels than grassland soils. In contrast, few significant differences in soil chemistry were observed between switchgrass crop and grassland soils. Active bacterial biomass was significantly lower in sorghum soils than switchgrass soils. Using GeoChip 4.0 functional gene arrays, we observed that microbial gene diversity was significantly lower in sorghum soils than grassland soils. Gene diversity at sorghum locations was negatively correlated with NO3 ? -N, NH4 + -N, and SO4 2? -S in C and N cycling microbial gene categories. Microbial gene diversity at switchgrass sites varied among geographic locations, but crop and grassland sites tended to be similar. Microbial gene abundance did not differ between sorghum crop and grassland soils, but was generally lower in switchgrass crop soils compared to grassland soils. Our results suggest that switchgrass has fewer adverse impacts on microbial soil ecosystem services than cultivation of an annual biofuel crop such as sorghum. Multi-year, multi-disciplinary regional studies comparing these and additional annual and perennial biofuel crop and grassland soils are recommended to help define sustainable crop production and soil ecosystem service practices.  相似文献   

20.

Aims

Many studies have proved that EDTA (ethylenediaminetetraacetic acid), EDDS ([S, S’]-ethylenediamine disuccinic acid), and other chelating agents significantly enhance phyto-extraction of copper (Cu) from soil. However, some key factors, such as changes in membrane permeability of root cells and subcellular distribution of Cu and Cu-EDDS complex in leaves and roots, remain unresolved.

Methods

A pot-culture experiment was conducted using soil artificially contaminated with Cu to different degrees to compare its effect on the above factors and the relationship between them in maize (Zea mays L.).

Results

Treatment with 0.5–6.0?mmol?kg?1 (soil) EDDS increased membrane permeability in root cells significantly (p?<?0.05). Chelated Cu accounted for 14.6%–17.4% of the total Cu content of roots and 77.7%–78.8% of that of leaves and was distributed mainly in cell walls in both.

Conclusions

EDDS increases Cu accumulation in shoots mainly by increasing the content of soluble Cu in soil and membrane permeability of root cells. Cu in soil may be absorbed through the apoplastic pathway into the root xylem, translocated to the shoots, and accumulated there as a Cu-EDDS complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号