首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status.

Methods

Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined.

Key Results

Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant.

Conclusions

Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.  相似文献   

2.
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g?1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g?1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.  相似文献   

3.
4.
Sanjiang Plain is the largest freshwater marsh in China, where plant zonation along water-level gradients is a common phenomenon. The aim of this experiment was to identify the role of water level and nutrient availability on plant zonation in the plain. Growth and root morphology of three perennial emergent macrophyte species were investigated by growing in two water levels (0.1 and 10.0 cm, relative to soil surface) and in two levels of nutrient supply (0 and 0.5 g slow-release fertilizer per container). In the plain, Carex lasiocarpa typically occurs at low elevations, Glyceria spiculosa at medial elevations, and Deyeuxia angustifolia at high elevations. The relative growth rate was the highest in C. lasiocarpa and the lowest in D. angustifolia in the 10.0-cm water level. Among the three species, only total biomass of D. angustifolia was affected by water level, and decreased with increasing water level. High nutrient supply led to increased total biomass in C. lasiocarpa and G. spiculosa. High water level led to an increased root diameter in G. spiculosa and a decreased root length in C. lasiocarpa. In the 10.0-cm water level, low nutrient supply led to thinner roots in D. angustifolia, but resulted in an increased specific root length (SRL) in C. lasiocarpa and root diameter in G. spiculosa. Water-level effect on root porosity was only observed in G. spiculosa, and nutrient amendment did not influence root porosity in all the species. These data indicate that both nutrient and water level are important factors regulating plant distribution pattern in the Sanjiang Plain, because both C. lasiocarpa and G. spiculosa are relatively sensitive to nutrient supply whereas D. angustifolia is sensitive to water level. Handling editor: S. M. Thomaz  相似文献   

5.
6.
To clarify the role of seasonal change, competitive response and nutrient availability in the competitive asymmetry of grassland species a competition experiment was conducted on Holcus lanatus , Anthoxanthum odoratum and Festuca ovina , which represent a successional sequence of decreasing nutrient availability. Seven harvests were taken over two growing seasons. At each harvest the dry weight of plant parts, dead leaves, leaf area and plant height were measured. Three key traits that determine the successional status of the species were studied: specific leaf area, specific shoot height, and dead leaf fraction.
The response of these traits to competition appeared to be limited and insufficient to change the competitive relations in the experiment. However, all three traits showed marked seasonal changes which resulted in superior growth and survival in winter of the species adapted to nutrient-poor environments. The findings support the theory that competitive asymmetry increases at higher nutrient levels. It is postulated that the directionality of light makes it possible for the dominant species to monopolize this resource more easily than nutrients.  相似文献   

7.
To study mechanism underpinning the calcifuge habit of some Lupinus species, especially under low‐phosphorus (P) conditions, Lupinus species that were likely to respond differently to calcium (Ca) availability were assembled, and the sensitivity to Ca under a low‐P supply was assessed. Seven Lupinus species (9 genotypes, L. albus L. cv Kiev, L. albus L. P26766, L. angustifolius L. cv Mandelup, L. angustifolius L. P26723, L. luteus L. cv Pootalong, L. hispanicus ssp. bicolor Boiss. and Reut. P22999, L. pilosus Murr. P27440, L. cosentinii Guss. P27225, and L. atlanticus Gladst. P27219) were grown hydroponically at 10 or 6000 μM Ca. Leaf symptoms, gas exchange and biomass were recorded; leaf and root nutrient concentrations were analysed, and the leaf cell types in which Ca and P accumulated were determined using elemental X‐ray microanalyses. Calcium toxicity was demonstrated for L. angustifolius P26723, L. hispanicus ssp. bicolor. P22999, and L. cosentinii P27225, whereas the other species were tolerant of a high Ca supply under low‐P conditions. In addition, genotypic differences in Ca toxicity were found within L. angustifolius. Most Ca accumulated in the mesophyll cells in all species, whereas most P was located in epidermal cells.  相似文献   

8.
Schippers  Peter  Olff  Han 《Plant Ecology》2000,149(2):219-231
Three grasses (Holcus lanatus, Anthoxanthum odoratum and Festuca ovina) and three herbs (Rumex obtusifolius, Plantago lanceolata and Hieracium pilosella) were grown in a greenhouse at 3 nutrient levels in order to evaluate plant allocation, architecture and biomass turnover in relation to fertility level of their habitats.Four harvests were done at intervals of 4 weeks. Various plant traits related to biomass partitioning, plant architecture, biomass turnover and performance were determined. Differences in nutrient supply induced a strong functional response in the species shoot:root allocation, but architecture and turnover showed little or no response. Architectural parameters like specific leaf area and specific root length, however, in general decreased during plant development.Species from more nutrient-rich successional stages were characterized by a larger specific leaf area and longer specific shoot height (height/shoot biomass), resulting in a higher RGR and total biomass in all nutrient conditions. There was no evidence that species from nutrient-poor environments had a longer specific root length or any other superior growth characteristic. The only advantage displayed by these species was a lower leaf turnover when expressed as the fraction of dead leaves and a shorter specific shoot height (SSH) which might prevent herbivory and mowing losses.The dead leaf fraction, which is a good indicator for biomass and nutrient loss, appeared to be not only determined by the leaf longevity, but was also found to be directly related to the RGR of the species. This new fact might explain the slow relative growth rates in species from a nutrient-poor habitat and should be considered in future discussions about turnover.  相似文献   

9.

Background and Aims

Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species.

Methods

The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined.

Key Results

The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass.

Conclusions

All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.  相似文献   

10.
Plant and Soil - In most ecosystems, plant roots from different species decompose in mixtures and in the presence of living roots; however much root decomposition research has focused on how roots...  相似文献   

11.
12.
Brachiaria forage grasses are widely used for livestock production in the tropics. Signalgrass (Brachiaria decumbens cv. Basilisk, CIAT 606) is better adapted to low phosphorus (P) soils than ruzigrass (B. ruziziensis cv. Kennedy, CIAT 654), but the physiological basis of differences in low-P adaptation is unknown. We characterized morphological and physiological responses of signalgrass and ruzigrass to low P supply by growing both grasses for 30 days in nutrient solution with two levels of P supply using the hydroxyapatite pouch system. Ruzigrass produced more biomass at both levels of P supply whilst signalgrass appears to be a slower-growing grass. Both grasses increased biomass allocation to roots and had higher root acid phosphatase and phytase activities at low P supply. At low P supply, ruzigrass showed greater morphological plasticity as its leaf mass density and lateral root fraction increased. For signalgrass, morphological traits that are not responsive to variation in P supply might confer long-term ecological advantages contributing to its superior field persistence: greater shoot tissue mass density (dry matter content) might lower nutrient requirements while maintenance of lateral root growth might be important for nutrient acquisition in patchy soils. Physiological plasticity in nutrient partitioning between root classes was also evident for signalgrass as main roots had higher nutrient concentrations at high P supply. Our results highlight the importance of analyzing morphological and physiological trait profiles and determining the role of phenotypic plasticity to characterize differences in low-P adaptation between Brachiaria genotypes.  相似文献   

13.
Plant mineral nutrients such as phosphorus may exert major control on crop responses to the rising atmospheric carbon dioxide (CO2) concentrations. To evaluate the growth, nutrient dynamics, and efficiency responses to CO2 and phosphorus nutrition, soybean (Glycine max (L.) Merr.) was grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) phosphate (Pi) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 µmol mol?1, respectively). The CO2 × Pi interaction was detected for leaf area, leaf and stem dry weight, and total plant biomass. The severe decrease in plant biomass in Pi-deficient plants (10–76%) was associated with reduced leaf area and photosynthesis (Pnet). The degree of growth stimulation (0–55% total biomass) by eCO2 was dependent upon the severity of Pi deficiency and was closely associated with the increased phosphorus utilization efficiency. With the exception of leaf and root biomass, Pi deficiency decreased the biomass partitioning to other plant organs with the maximum decrease observed in seed weight (8–42%) across CO2 levels. The increased tissue nitrogen (N) concentration in Pi-deficient plants was accredited to the lower biomass and increased nutrient uptake due to the larger root to shoot ratio. The tissue P and N concentration tended to be lower at eCO2 versus aCO2 and did not appear to be the main cause of the lack of CO2 response of growth and Pnet under severe Pi deficiency. The leaf N/P ratio of >16 was detrimental to soybean growth. The tissue P concentration needed to attain the maximum productivity for biomass and seed yield tended to be higher at eCO2 versus aCO2. Therefore, the eCO2 is likely to increase the leaf critical P concentration for maximum biomass productivity and yield in soybean.  相似文献   

14.
We investigated the effect of CO2 concentration and soilnutrient availability during growth on the subsequent decomposition andnitrogen (N) release from litter of four annual grasses that differ inresource requirements and native habitat. Vulpia microstachys isa native grass found on California serpentine soils, whereas Avenafatua, Bromus hordaceus, and Lolium multiflorum areintroduced grasses restricted to more fertile sandstone soils (Hobbs & Mooney 1991). Growth in elevated CO2 altered litter C:N ratio,decomposition, and N release, but the direction and magnitude of thechanges differed among plant species and nutrient treatments. ElevatedCO2 had relatively modest effects on C:N ratio of litter,increasing this ratio in Lolium roots (and shoots at high nutrients),but decreasing C:N ratio in Avena shoots. Growth of plants underelevated CO2 decreased the decomposition rate of Vulpialitter, but increased decomposition of Avena litter from the high-nutrient treatment. The impact of elevated CO2 on N loss fromlitter also differed among species, with Vulpia litter from high-CO2 plants releasing N more slowly than ambient-CO2litter, whereas growth under elevated CO2 caused increased Nloss from Avena litter. CO2 effects on N release in Lolium and Bromus depended on the nutrient regime in whichplants were grown. There was no overall relationship between litter C:Nratio and decomposition rate or N release across species and treatments.Based on our study and the literature, we conclude that the effects ofelevated CO2 on decomposition and N release from litter arehighly species-specific. These results do not support the hypothesis thatCO2 effects on litter quality consistently lead to decreasednutrient availability in nutrient-limited ecosystems exposed to elevatedCO2.  相似文献   

15.
松嫩草地80种草本植物叶片氮磷化学计量特征   总被引:12,自引:0,他引:12       下载免费PDF全文
以松嫩草地常见草本植物为研究对象, 分析了各生活型和功能群叶片氮磷化学计量特征。结果显示: 松嫩草地80种草本植物的叶片氮、磷质量浓度分别为(24.2 ± 0.96) mg·g -1和(2.0 ± 0.10) mg·g -1, 面积浓度分别为(13.0 ± 0.54) mg·cm -2和(1.0 ± 0.05) mg·cm -2, 氮磷比为13.0 ± 0.39, 氮磷比与叶片磷质量浓度、叶片氮、磷面积浓度有显著相关关系; 松嫩草地植物生长受到氮限制。一年生植物叶片氮、磷质量浓度和变异系数高于其他生活型, 各生活型之间氮面积浓度和氮磷比差异不显著。豆科植物叶片氮的质量浓度、面积浓度和氮磷比高于其他功能群。在不同生活型或功能群之间, 植物叶片磷的面积浓度差异不显著, 都在1.0 mg·cm -2左右; 适当地增加群落中豆科植物的比例, 可能有助于提高松嫩草地产量和质量。  相似文献   

16.
动态平衡理论是生态化学计量学的理论基础, 各种有机体是否存在一个固定的化学计量比是生态学研究的热点问题。该文研究了杭州湾滨海湿地3种优势物种海三棱藨草(Scirpus mariqueter)、糙叶薹草(Carex scabrifolia)和芦苇(Phragmites australis)叶片N、P生态化学计量特征的季节变化。结果发现, 3种植物叶片N含量范围分别是7.41-17.12、7.47-13.15和6.03-18.09 mg·g-1, 平均值(±标准差)分别为(11.69 ± 2.66)、(10.17 ± 1.53)和(11.56 ± 3.19) mg·g-1; 叶片P范围分别是0.34-2.60、0.41-1.10和0.35-2.04 mg·g-1, 平均值为(0.93 ± 0.62)、(0.74 ± 0.23)和(0.82 ± 0.53) mg·g-1; N:P范围分别是7.19-30.63、11.58-16.81和8.62-21.86, 平均值为16.83 ± 8.31、14.53 ± 3.91和16.49 ± 5.51, 可见不同植物其生态化学计量值范围存在一定差异, 但经方差分析发现3种草本植物间生长季节内N、P元素含量差异并不显著(p > 0.05)。各物种叶片N、P含量均表现出在生长初期显著大于其他生长季节(p < 0.05), 生长旺季(6、7月)随着叶片生物量的持续增加, N、P含量逐渐降低并达到最小值, 随后8-9月叶片不再生长而N、P含量逐渐回升, 在10月叶片衰老时N、P含量再次下降; 叶片N:P则在生长初期较小, 在生长旺季先升高后降低, 随后叶片成熟不再生长时又逐渐增加并趋于稳定。  相似文献   

17.
Uncultivated plants growing on disturbed sites may be useful for assessing the bioavailability of some metals in soils, and thus the potential for metal mobilization up the terrestrial food chain, an important element in ecological risk assessment. A planted chicory cultivar (Cichorium intybus L. var. foliosum Hegi.) and the uncultivated plants horseweed (Canada fleabane) (Erigeron canadensis L.) and dogfennel (Eupatorium capillifolium (Lam.) Small) were evaluated for their ability to act as index plant species for soil Cd, Cr, Ni, and V at two field sites where these metals had been applied five yr previously to two highly weathered sandy Ultisols. Soil Cd was available to all analyzed plant tissues of all three plant species at both sites, particularly on the sandier Blanton soil. Chicory was an effective index plant for Cd on the finer textured Orangeburg soil but functioned as an indicator plant (toxicity symptoms were observed) on the sandier Blanton soil. Horseweed and dogfennel were effective index plants for Cd in both contaminated soils. Soil Cr, Ni, and V were less bioavailable than soil Cd and plant metal uptake was more sensitive to residual soil Cr, Ni, and V than was soil extraction with double acid. Horseweed and chicory may have potential as index plants for soil Cr. Chicory may have potential as a Ni index plant. Chicory and dogfennel may have potential as V index plants.  相似文献   

18.
Rien Aerts 《Polar Biology》2009,32(2):207-214
Global warming will lead to increased nitrogen supply in tundra ecosystems. How increased N supply affected leaf production, leaf turnover and dead leaf N input into the soil of Empetrum nigrum and Andromeda polifolia (evergreens), Eriophorum vaginatum (graminoid) and Betula nana (deciduous) in a sub-arctic tundra in northern Sweden between 2003 and 2007 was experimentally investigated. There was considerable interspecific variation in the response of leaf production to N addition, varying from negative, no response to a positive response. Nitrogen addition effects on leaf turnover also showed considerable variation among species, varying from no effect to increased leaf turnover (up to 27% in Eriophorum). Nitrogen addition resulted in a four to fivefold increase in N content in the dead leaves of both evergreens and a 65% increase in Eriophorum. Surprisingly, there was no increase in Betula. The response of dead leaf P contents to N addition was rather species specific. There was no response in Empetrum, whereas there were significant increases in Andromeda (+214%) and Eriophorum (+32%), and a decrease of 47% in Betula. As an overall result of the changes in leaf production, leaf turnover and dead leaf N and P contents, nitrogen addition increased in all species except Betula the amount of N and, for Andromeda and Eriophorum the amount of P transferred to the soil due to leaf litter inputs. However, the way in which this was achieved differed substantially among species due to interspecific differences in the response of the component processes (leaf production, leaf turnover, dead leaf nutrient content).  相似文献   

19.
近年来大气氮(N)沉降的增加, 导致森林土壤中有效N含量增加、N:P发生改变, 研究N沉降对低磷(P)胁迫下林木根系分泌和P效率的影响具有重要意义。该文以马尾松(Pinus massoniana)家系作为试验材料, 设置模拟N沉降与同质低P (介质表层与深层均缺P)、异质低P (介质表层P丰富、深层缺P)耦合的二年生盆栽实验, 系统研究了模拟N沉降对低P胁迫下马尾松根系分泌性酸性磷酸酶(APase)活性、有机酸分泌以及P效率的影响。结果表明: (1)同质低P和异质低P下, 模拟N沉降均显著提高了植株N:P化学计量比、增加了P素的相对匮乏程度, 从而诱导根系增加了APase和有机酸的分泌, 而同质低P比异质低P下增加幅度更大, 其中有机酸分泌均与马尾松生长呈正相关关系, 而APase活性与P效率相关性较小; (2)同质低P下, N沉降虽然增加了根系分泌, 但未提高马尾松P素吸收和生长量, 其原因在于, 同质低P下植株N:P过高, 因而植株对N沉降敏感性低; 在异质低P下, 植株表现为N、P共同限制, 因而对N敏感性较高, N沉降增加了根系分泌, 同时提高了N和P吸收效率、增加了生物量; (3)马尾松根系分泌对模拟N沉降的响应存在较大的家系差异。同质低P下, 家系71×20的有机酸分泌和生物量对N沉降的响应幅度较大; 异质低P下, 家系36×29、71×20和73×23对N沉降的响应幅度较大。  相似文献   

20.
三种植物对土壤磷吸收和富集能力的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
筛选磷富集植物是磷矿废弃地土壤与植被修复的关键。该文以向日葵(Helianthus annuus)、苏丹草(Sorghum sudanense)、南瓜(Cucurbita moschata)为研究对象, 采用盆栽试验, 设置5个磷浓度(0、100、300、500和700 mg·kg-1), 分别在3个不同生长时段(4周、7周、10周)内采样, 对这3种植物的磷吸收和富集能力进行了比较。结果表明: (1)在相同生长时间内, 向日葵、苏丹草、南瓜的地上部磷含量均随磷处理浓度的升高而增大, 最大值分别为9.67 g·kg-1、4.86 g·kg-1、6.32 g·kg-1; 相同浓度下, 向日葵地上部磷含量随着生长时间的延长呈上升趋势, 苏丹草则呈下降趋势, 南瓜无显著变化; (2) 3种植物的地上部磷累积量均在磷处理浓度为700 mg·kg-1时, 生长10周后达到最大值, 分别为217.83 mg·plant-1、93.92 mg·plant-1、135.82 mg·plant-1; (3)各浓度处理下, 向日葵、苏丹草的地上部磷富集系数和转移系数均大于1.00, 南瓜的地上部磷富集系数和转移系数波动较大; 向日葵的富集系数和转移系数最大值分别达11.39和4.09。综合比较可知, 3种植物磷吸收和富集能力的大小顺序为: 向日葵>南瓜>苏丹草。向日葵各项富磷特征基本符合磷富集植物的筛选标准, 可作为磷矿废弃地土壤与植被修复的备选物种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号