首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus recombinants from overlapping cosmid fragments.   总被引:14,自引:12,他引:2       下载免费PDF全文
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have assembled derivatives of Epstein-Barr Virus (EBV) that include 71 kbp of noncontiguous DNA sequences cloned into a prokaryotic F-factor plasmid. These mini-EBVs, when introduced into an EBV-containing lymphoblastoid cell, can be packaged by the endogenous helper virus. One such mini-EBV was found to have a single C residue deleted from its EBNA3a open reading frame. When packaged, this mini-EBV initiates proliferation of infected primary human B lymphocytes only in conjunction with a complementing helper virus. Proliferation of the infected cells, however, was maintained either alone by the mini-EBV containing the mutated EBNA3a open reading frame or alone by its derivative in which the EBNA3a open reading frame had been healed of its lesion by recombination with the helper virus. The mini-EBV with a wild-type EBNA3a open reading frame when packaged alone can both initiate and maintain proliferation upon infection of primary human B lymphocytes. These findings identify 41% of EBV DNA which is sufficient to immortalize primary human B lymphocytes and provide an assay to distinguish virus contributions to initiation or maintenance of cell proliferation or both. They also identify EBNA3a as a transforming gene, which contributes primarily to the initiation of cell proliferation.  相似文献   

3.
Using second-site homologous recombination, Epstein-Barr virus (EBV) recombinants were constructed which carry an LMP2A mutation terminating translation at codon 19. Despite the absence of LMP2A or LMP2A cross-reactive protein, the recombinants were able to initiate and maintain primary B-lymphocyte growth transformation in vitro. EBNA1, EBNA2, and LMP1 expression was unaffected by the LMP2A mutation. The LMP2A mutant recombinant EBV-infected lymphoblastoid cell lines (LCLs) were identical to wild-type recombinant EBV-infected control LCLs with respect to initial outgrowth, subsequent growth, sensitivity to limiting cell dilution, sensitivity to low serum, and growth in soft agarose. The permissivity of LCLs for lytic EBV infection and virus replication was also unaffected by the LMP2A mutation.  相似文献   

4.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.  相似文献   

5.
An Epstein-Barr virus (EBV) recombinant (MS231) that expresses the first 231 amino acids (aa) of LMP1 and is truncated 155 aa before the carboxyl terminus transformed resting B lymphocytes into lymphoblastoid cell lines (LCLs) only when the infected cells were grown on fibroblast feeder cells (K. M. Kaye et al., J. Virol. 69:675-683, 1995). Higher-titer MS231 virus has now been compared to wild-type (WT) EBV recombinants for the ability to cause resting primary B-lymphocyte transformation. Unexpectedly, MS231 is as potent as WT EBV recombinants in causing infected B lymphocytes to proliferate in culture for up to 5 weeks. When more than one transforming event is initiated in a microwell, the MS231 recombinant supports efficient long-term LCL outgrowth and fibroblast feeder cells are not required. However, with limited virus input, MS231-infected cells differed in their growth from WT virus-infected cells as early as 6 weeks after infection. In contrast to WT virus-infected cells, most MS231-infected cells could not be grown into long-term LCLs. Thus, the LMP1 amino-terminal 231 aa are sufficient for initial growth transformation but the carboxyl-terminal 155 aa are necessary for efficient long-term outgrowth. Despite the absence of the carboxyl-terminal 155 aa, MS231- and WT-transformed LCLs are similar in latent EBV gene expression, in ICAM-1 and CD23 expression, and in NF-kappaB and c-jun N-terminal kinase activation. MS231 recombinant-infected LCLs, however, require 16- to 64-fold higher cell density than WT-infected LCLs for regrowth after limiting dilution. These data indicate that the LMP1 carboxyl-terminal 155 aa are important for growth at lower cell density and appear to reduce dependence on paracrine growth factors.  相似文献   

6.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

7.
8.
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.  相似文献   

9.
10.
Recombinant Epstein-Barr viruses with a stop codon inserted into the nuclear protein 3B (EBNA 3B) open reading frame were generated by second-site homologous recombination. These mutant viruses infected and growth transformed primary B lymphocytes, resulting in the establishment of lymphoblastoid cell lines (LCLs). Polymerase chain reaction analysis and Southern hybridizations with infected cell DNA demonstrated the presence of the mutant EBNA 3B and the absence of wild-type EBNA 3B. Immunoblot analysis of the LCLs with affinity-purified EBNA 3B antibodies confirmed the absence of EBNA 3B cross-reactive protein. Virus was reactivated from two of these infected LCLs and serially passaged through primary B lymphocytes. The newly infected cells contained only the mutant recombinant virus. No difference was noted between mutant and wild-type recombinants, derived in parallel, in latent (other than EBNA 3B) or lytic cycle-infected cell virus protein expression or in the growth of the latently infected transformed cell lines. These data indicate that the EBNA 3B protein is not critical for primary B-lymphocyte infection, growth transformation, or lytic virus infection in vitro.  相似文献   

11.
Recombinant Epstein-Barr viruses (EBVs) were made with mutated latent membrane protein 1 (LMP1) genes that express only the LMP1 amino-terminal cytoplasmic and six transmembrane domains (MS187) or these domains and the first 44 amino acids of the 200-residue LMP1 carboxy-terminal domain (MS231). After infection of primary B lymphocytes with virus stocks having small numbers of recombinant virus and large numbers of P3HR-1 EBV which is transformation defective but wild type (WT) for LMP1, all lymphoblastoid cell lines (LCLs) that had MS187 or MS231 LMP1 also had WT LMP1 provided by the coinfecting P3HR-1 EBV. Lytic virus infection was induced in these coinfected LCLs, and primary B lymphocytes were infected. In over 200 second-generation LCLs, MS187 LMP1 was never present without WT LMP1. Screening of over 600 LCLs infected with virus from MS231 recombinant virus-infected LCLs identified two LCLs which were infected with an MS231 recombinant without WT LMP1. The MS231 recombinant virus could growth transform primary B lymphocytes when cells were grown on fibroblast feeders. Even after 6 months on fibroblast feeder layers, cells transformed by the MS231 recombinant virus died when transferred to medium without fibroblast feeder cells. These data indicate that the LMP1 carboxy terminus is essential for WT growth-transforming activity. The first 44 amino acids of the carboxy-terminal cytoplasmic domain probably include an essential effector of cell growth transformation, while a deletion of the rest of LMP1 can be complemented by growth on fibroblast feeder layers. LMP1 residues 232 to 386 therefore provide a growth factor-like effect for the transformation of B lymphocytes. This effect may be indicative of the broader role of LMP1 in cell growth transformation.  相似文献   

12.
Iwakiri D  Samanta M  Takada K 《Uirusu》2006,56(2):201-208
Epstein-Barr virus (EBV) is the DNA tumor virus, which is known to be relevant to various cancers. EBV maintains latent infection in cancer cells, and there are three types of latent infection (type I-III) according to the patterns of viral latent genes expression. EBV has the ability to transform B cells into immortalized lymphoblastoid cell lines (LCL) showing type III latency, in which all latent genes are expressed. The mechanism of B-cell transformation has provided a model of EBV-associated lymphomas in immunosuppressed individuals. In type I and II latency, the limited numbers of latent genes are expressed. Previous studies have demonstrated the oncogenic functions of latent EBV genes including nuclear antigen EBNA1, membrane protein LMP1 and LMP2A. In addition, we have demonstrated that EBV-encoded small RNA EBERs play a significant role in oncogenesis. Here we summarize recent progresses in the studies on molecular mechanisms of EBV-mediated oncogenesis.  相似文献   

13.
K M Izumi  K M Kaye    E D Kieff 《Journal of virology》1994,68(7):4369-4376
Previous recombinant Epstein-Barr virus molecular genetic experiments with specifically mutated LMP1 genes indicate that LMP1 is essential for primary B-lymphocyte growth transformation and that the amino-terminal cytoplasmic and first transmembrane domains are together an important mediator of transformation. EBV recombinants with specific deletions in the amino-terminal cytoplasmic domain have now been constructed and tested for the ability to growth transform primary B lymphocytes into lymphoblastoid cell lines. Surprisingly, deletion of DNA encoding EHDLER or GPPLSSS from the full LMP1 amino-terminal cytoplasmic domain (MEHDLERGPPGPRRPPRGPPLSSS) had no discernible effect on primary B-lymphocyte transformation. These two motifs distinguish the LMP1 amino-terminal cytoplasmic domain from other arginine-rich membrane proximal sequences that anchor hydrophobic transmembrane domains. Two deletions which included the ERGPPGPRRPPR motif adversely affected but did not prevent transformation. This arginine- and proline-rich sequence is probably important in anchoring the first transmembrane domain in the plasma membrane, since these mutated LMP1s had altered stability and cell membrane localization. The finding that overlapping deletions of the entire amino-terminal cytoplasmic domain do not ablate transformation is most consistent with a model postulating that the transmembrane and carboxyl-terminal cytoplasmic domains are the likely biochemical effectors of transformation.  相似文献   

14.
A transfection assay with a lymphoblastoid cell line infected with Epstein-Barr virus was used to compare the abilities of type 1 and type 2 EBNA2 to sustain cell proliferation. The reduced proliferation in cells expressing type 2 EBNA2 correlated with loss of expression of some cell genes that are known to be targets of type 1 EBNA2. Microarray analysis of EBNA2 target genes identified a small number of genes that are more strongly induced by type 1 than by type 2 EBNA2, and one of these genes (CXCR7) was shown to be required for proliferation of lymphoblastoid cell lines. The Epstein-Barr virus LMP1 gene was also more strongly induced by type 1 EBNA2 than by type 2, but this effect was transient. Type 1 and type 2 EBNA2 were equally effective at arresting cell proliferation of Burkitt's lymphoma cell lines lacking Epstein-Barr virus and were also shown to cause apoptosis in these cells. The results indicate that differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2 may be the basis for the much weaker B-cell transformation activity of type 2 Epstein-Barr virus strains compared to type 1 strains.  相似文献   

15.
A latent infection membrane protein (LMP) encoded by the Epstein-Barr virus (EBV) genome in latently infected, growth-transformed lymphocytes alters the phenotype of a human EBV-negative B-lymphoma cell line (Louckes) when introduced by gene transfer. These LMP-expressing cells exhibit increased homotypic adhesion due to increased expression of the adhesion molecules LFA-1 and ICAM-1. Increased homotypic adhesion could foster B-cell growth by facilitating autocrine growth factor effects. LFA-3 expression is also induced. The induction of LFA-3 and ICAM-1 results in increased heterotypic adhesion to T lymphocytes. This could result in more effective T-cell immune surveillance. Since LMP is expressed in EBV-transformed lymphocytes and has been demonstrated to transform rodent fibroblasts in vitro, a wide range of possible effects on B-lymphoma cell growth were assayed. In the Louckes B-lymphoma cell line, EBV LMP causes increased cell size, acid production, plasma membrane ruffling, and villous projections. Although cell proliferation rate was not greatly affected, the steady-state intracellular free calcium level, transforming growth factor beta responsiveness, and expression of the lymphocyte activation markers (CD23 and transferrin receptor) were increased. Thus, LMP appears to be a mediator of EBV effects on B-cell transformation. In transfected lymphoma cells, LMP localizes to patches at the cell periphery and associates with the cytoskeleton as it does in EBV-transformed B lymphocytes or in rodent fibroblasts. A partially deleted form of LMP (D1LMP) does not aggregate in patches or associate with the cytoskeleton and had little effect on B-cell growth. Thus, cytoskeletal association may be integral to LMP activity.  相似文献   

16.
17.
Epstein-Barr virus (EBV)-negative Burkitt's lymphoma (BL) cell lines have been converted to EBV genome positivity by in vitro infection with the transforming EBV strain B95.8 and with the nontransforming mutant strain P3HR1, which has a deletion in the gene encoding the nuclear antigen EBNA2. These B95.8- and P3HR1-converted lines have been compared for their patterns of expression of EBV latent genes (i.e., those viral genes constitutively expressed in all EBV-transformed lines of normal B-cell origin) and for their recognition by EBV-specific cytotoxic T lymphocytes (CTLs), in an effort to identify which latent gene products provide target antigens for the T-cell response. B95.8-converted lines on several different EBV-negative BL-cell backgrounds all showed detectable expression of the nuclear antigens EBNA1, EBNA2, and EBNA3 and of the latent membrane protein (LMP); such converts were also clearly recognized by EBV-specific CTL preparations with restriction through selected human leukocyte antigen (HLA) class I antigens on the target cell surface. The corresponding P3HR1-converted lines (lacking an EBNA2 gene) expressed EBNA1 and EBNA3 but, surprisingly, showed no detectable LMP; furthermore, these converts were not recognized by EBV-specific CTLs. Such differences in T-cell recognition were not due to any differences in expression of the relevant HLA-restricting determinants between the two types of convert, as shown by binding of specific monoclonal antibodies and by the susceptibility of both B95.8 and P3HR1 converts to allospecific CTLs directed against these same HLA molecules. The results suggest that in the normal infectious cycle, EBNA2 may be required for subsequent expression of LMP and that both EBNA2 and LMP (but not EBNA1 or EBNA3) may provide target antigens for the EBV-specific T-cell response.  相似文献   

18.
19.
Epstein-Barr virus (EBV)-induced lymphoproliferative disease is an important complication in the context of immune deficiency. Impaired T-cell immunity allows the outgrowth of transformed cells with the subsequent production of predominantly B-cell lymphomas. Currently there is no in vivo model that can adequately recapitulate EBV infection and its association with B-cell lymphomas. NOD/SCID mice engrafted with human CD34(+) cells and reconstituted mainly with human B lymphocytes may serve as a useful xenograft model to study EBV infection and pathogenesis. We therefore infected reconstituted mice with EBV. High levels of viral DNA were detected in the peripheral blood of all infected mice. All infected mice lost weight and showed decreased activity levels. Infected mice presented large visible tumors in multiple organs, most prominently in the spleen. These tumors stained positive for human CD79a, CD20, CD30, and EBV-encoded RNAs and were light chain restricted. Their characterization is consistent with that of large cell immunoblastic lymphoma. In addition, tumor cells expressed EBNA1, LMP1, and LMP2a mRNAs, which is consistent with a type II latency program. EBV(+) lymphoblastoid cell lines expressing human CD45, CD19, CD21, CD23, CD5, and CD30 were readily established from the bone marrow and spleens of infected animals. Finally, we also demonstrate that infection with an enhanced green fluorescent protein (EGFP)-tagged virus can be monitored by the detection of infected EGFP(+) cells and EGFP(+) tumors. These data demonstrate that NOD/SCID mice that are reconstituted with human CD34(+) cells are susceptible to infection by EBV and accurately recapitulate important aspects of EBV pathogenesis.  相似文献   

20.
Epstein-Barr virus (EBV) recombinants with specifically mutated BCRF1 genes were constructed and compared with wild-type BCRF1 recombinants derived in parallel for the ability to initiate and maintain latent infection and growth transformation in primary human B lymphocytes. A stop codon insertion after codon 116 of the 170-codon BCRF1 open reading frame or deletion of the entire gene had no effect on latent infection, B-lymphocyte proliferation into long-term lymphoblastoid cell lines (LCLs), or virus replication. LCLs infected with the stop codon recombinant were indistinguishable from wild-type recombinant-infected LCLs in tumorigenicity in SCID mice. However, mutant BCRF1 recombinant-infected cells differed from wild-type recombinant-infected cells in their inability to block gamma interferon release in cultures of permissively infected LCLs incubated with autologous human peripheral blood mononuclear cells. This is the first functional assay for BCRF1 expression from the EBV genome. BCRF1 probably plays a key role in modulating the specific and nonspecific host responses to EBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号