首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spider Eresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2 and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness of R=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant, He?0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST? 0.04) and level 3 and 4 samples (0.07ST<0.18), and apparent inbreeding among level 3 and 4 samples, FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12ST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocial E. cinnebarinus differ, females versus males, female behaviour of both sociality classes lead to high genetic variance.  相似文献   

2.
Across several animal taxa, the evolution of sociality involves a suite of characteristics, a “social syndrome,” that includes cooperative breeding, reproductive skew, primary female‐biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short‐term benefits but come with long‐term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD‐sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister‐species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within‐population diversity were sixfold to 10‐fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species‐wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species‐wide genetic diversity of social species was 5–8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential.  相似文献   

3.
Cooperation and group living are extremely rare in spiders and only few species are known to be permanently social. Inbreeding is a key characteristic of social spiders, resulting in high degrees of within‐colony relatedness that may foster kin‐selected benefits of cooperation. Accordingly, philopatry and regular inbreeding are suggested to play a major role in the repeated independent origins of sociality in spiders. We conducted field observations and laboratory experiments to investigate the mating system of the subsocial spider Stegodyphus tentoriicola. The species is suggested to resemble the ‘missing link’ in the transition from subsociality to permanent sociality in Stegodyphus spiders because its social period is prolonged in comparison to other subsocial species. Individuals in our two study populations were spatially clustered around maternal nests, indicating that clusters consist of family groups as found in the subsocial congener Stegodyphus lineatus. Male mating dispersal was limited and we found no obvious pre‐copulatory inbreeding avoidance, suggesting a high likelihood of mating with close kin. Rates of polygamy were low, a pattern ensuring high relatedness within broods. In combination with ecological constraints, such as high costs of dispersal, our findings are consistent with the hypothesis that the extended social period in S. tentoriicola is accompanied with adaptations that facilitate the transition towards permanent sociality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 851–859.  相似文献   

4.
Aggregation is usually studied in functional terms, forgetting mechanisms. In this paper, experimental results on the ant Lasius niger, complemented by a model, allow us to understand the mechanisms responsible for aggregation and to study the influence of the population density on this phenomenon. The results show (1) a high level of aggregation and the emergence of a large cluster; (2) that aggregation results from an amplification mechanism—the greater the number of ants inside a cluster, the greater the time spent by one ant in this cluster; and (3) that population density has only a weak influence on the aggregation process. This method of analysis and these results can certainly be extended not only in social insects but also in other species, like subsocial arthropods.  相似文献   

5.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

6.
The adequacy and utility of behavioural characters in phylogenetics is widely acknowledged, especially for stereotyped behaviours. However, the most common behaviours are not stereotyped, and these are usually seen as inappropriate or more difficult to analyze in a phylogenetic context. A few methods have been proposed to deal with such data, although they have never been tested on samples larger than six species, which limits their evolutionary interest. In the present study, we perform behavioural observations on 13 cockroach species and derive behavioural phylogenetic characters with the successive event‐pairing method. We combine these characters with morphological and molecular data (approximately 6800 bp) in a phylogenetic study of 41 species. We then reconstruct ancestral states of the behavioural data to study evolution of social behaviour in these insects with regard to their social systems (i.e. solitary, gregarious, and subsocial) and diversity of habitat choice. We report for the first time that nonstereotyped behavioural data are adequate for phylogenetic analyses: they are no more homoplastic than traditional data, and support several phylogenetic relationships that we discuss. From an evolutionary perspective, we show that the solitary species Thanatophyllum akinetum does not display original behavioural interactions, suggesting phylogenetic inertia of interactive behaviours despite a radical change in social structure. Conversely, the subsocial species Parasphaeria boleiriana shows original behavioural interactions, which could result from its peculiar social system or habitat. We conclude that phylogenetic approaches in studies of behaviour are useful for deciphering evolution of behaviour and discriminating between its different modalities, even for nonstereotyped characters. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 58–77.  相似文献   

7.
I compared life tables between the solitary eumenid wasp Anterhynchium flavomarginatumSmith and the subsocial eumenid wasp Orancistrocerus drewseniSaussure in Kyoto, Japan, during 1980–1983. The subsocial eumenid is parthenogenetic in this study area. There were 9 identified mortality factors in the solitary eumenid and 7 in the subsocial eumenid, 6 of which were common to the two eumenids. The important differences of mortality between the two eumenids were seen in the egg, larval, and prepupal stages. In the egg stage, mortality by the phorid fly Megaselia sp. was much lower in the subsocial eumenid (1.4%) than in the solitary eumenid (15.0%) likely because of the matenal care of the subsocial eumenid (progressive provisioning and other related behavior), which reduced predation pressure. In the larval stage, mortality by the miltogrammine fly Amobia distorta was also lower in the subsocial eumenid (8.1%) than in the solitary eumenid (23.8%) also probably because of the maternal care of the subsocial eumenid. A comparison of mortality in the two eumenids between the stable, long continuing natural nest sites and the additional temporal ones showed that the phorid fly remained near its birth place and parasitized stable nest sites. The miltogrammine fly followed returning eumenid wasps and parasitized those nest sites that have a high host density. In the prepupal stage, mortality by endogenous death was higher in the subsocial eumenid than in the solitary eumenid. Mortality due to the rhipiphorid beetle was also higher in the subsocial eumenid probably due to more frequent flower-visits by the subsocial eumenid. The defense mechanism of the subsocial eumenid was discussed in relation to the evolution of subsociality.  相似文献   

8.

Background  

Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider Stegodyphus lineatus, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider S. tentoriicola, a species suggested to be at the transition to permanent sociality.  相似文献   

9.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

10.
11.
To look for the occurrence and the significance of brood care in social evolution, I reared six eusocial halictine bee species in laboratory cages enabling the observation of intranest behaviour: Lasioglossum (Evylaeus) laticeps, L. (E.) pauxillum, L. (E.) nigripes, L. (E.) euboeensis, Halictus (Halictus) scabiosae and L. (E.) fulvicorne. All of them were subsocial, each mother caring for her brood. Brood cells were sealed after oviposition with earthen plugs; they were then reopened, visited and closed again. These observations plus the reports in the literature on eleven eusocial species indicate that seventeen species of eusocial halictine bees provide parental care, i.e. are subsocial. Brood care, subsociality, is strongly associated with eusociality. To study reversal from eusociality to subsociality, I have reared the non-eusocial form of two species within which there are or have been eusocial forms: Halictus (H.) rubicundus and Lasioglossum (E.) fratellum. They are secondarily solitary, having lost worker brood. However, both species still show brood care. This suggests that in transitions to eusociality, brood care antedated eusociality. To further examine this issue I reared two truly solitary species that are not derived from eusocial ancestors: Lasioglossum (E.) villosulum and L. (L.) quadrinotatum. Unlike secondarily solitary species, females of both these species close their brood cells after oviposition and ignore their progeny thereafter. This association strongly suggests that the subsocial route with maternal brood care is the route to eusociality in halictine bees.  相似文献   

12.
The objective of this study was to measure the possible effects of prolonged parental care on offspring growth in Korean wood-feeding cockroaches, Cryptocercus kyebangensis. In the field-caught subsocial woodroaches of C. kyebangensis, offspring with both parents were greater in both head width and body weight than those with single parents. Manipulation experiments showed that offspring separated from their parents could survive independently without parents, but they grew more rapidly when they remained with their parents. In particular, the effects of parental care on offspring growth were found to be stronger in groups with both parents than those with single parents. These results suggest that the prolonged parental care evolved in Cryptocercus has a significant impact on offspring growth. Electronic Publication  相似文献   

13.
Agnarsson, I., Kuntner, M., Coddington, J. A. & Blackledge, T. A. (2009). Shifting continents, not behaviours: independent colonization of solitary and subsocial Anelosimus spider lineages on Madagascar (Araneae, Theridiidae). —Zoologica Scripta, 39, 75–87. Madagascar is a biodiversity hotspot, thought to be colonized mostly via Cenozoic dispersal from Africa, followed by endemic radiation of multiple lineages. Anelosimus spiders are diverse in Madagascar, and, like their congeners in the Americas, are most diverse in wet montane forests. Most Anelosimus species are social in that they cooperate in web building and prey capture either during a part of their life cycles (subsocial), including hitherto studied Malagasy species, or permanently (quasisocial). One Central American coastal species, Anelosimus pacificus, has secondarily switched to solitary living, and available evidence suggests that its closest relatives from S. America and Europe are likely also solitary. Here, we show that the only known coastal Anelosimus species in Madagascar and Comoros –Anelosimus decaryi and Anelosimus amelie sp. n. – are also solitary. Using a phylogenetic approach, we test two competing hypotheses: (i) that Malagasy Anelosimus are monophyletic and thus represent a second example of reversal to solitary living in a littoral habitat or (ii) that solitary and subsocial lineages independently colonized Madagascar. We find that solitary Malagasy Anelosimus are closely related to their solitary counterparts from Europe and the Americas, while subsocial Malagasy species nest sister to Anelosimus nelsoni from S. Africa. This finding suggests that (i) the two Anelosimus lineages colonized Madagascar independently and (ii) a reversal to solitary behaviour has occurred only once in Anelosimus. Thus, solitary littoral Malagasy species did not descend from Malagasy mountains, but arrived from much further afar. African and possibly American origin of the two lineages is implied by our findings. To restore natural classification of Anelosimus, Seycellocesa Koçak & Kemal is synonymized with it.  相似文献   

14.
The evolution of sociality in spiders is associated with female bias, reproductive skew and an inbreeding mating system, factors that cause a reduction in effective population size and increase effects of genetic drift. These factors act to decrease the effectiveness of selection, thereby increasing the fixation probability of deleterious mutations. Comparative studies of closely related species with contrasting social traits and mating systems provide the opportunity to test consequences of low effective population size on the effectiveness of selection empirically. We used phylogenetic analyses of three inbred social spider species and seven outcrossing subsocial species of the genus Stegodyphus, and compared dN/dS ratios and codon usage bias between social Inbreeding and subsocial outcrossing mating systems to assess the effectiveness of selection. The overall results do not differ significantly between the social inbreeding and outcrossing species, but suggest a tendency for lower codon usage bias and higher dN/dS ratios in the social inbreeding species compared with their outcrossing congeners. The differences in dN/dS ratio and codon usage bias between social and subsocial species are modest but consistent with theoretical expectations of reduced effectiveness of selection in species with relatively low effective population size. The modest differences are consistent with relatively recent evolution of social mating systems. Additionally, the short terminal branches and lack of speciation of the social lineages, together with low genetic diversity lend support for the transient state of permanent sociality in spiders.  相似文献   

15.
Species range boundaries often form along environmental gradients that dictate the success of the phenotypes present in each habitat. Sociality may allow colonization of environments where related species with a solitary lifestyle cannot persist. Social spiders in the genus Anelosimus appear restricted to low- and mid-elevation moist environments in the tropics, while subsocial spiders, common at higher elevations and latitudes, appear to be absent from the lowland tropical rainforest. Here, we seek factors that may simultaneously prevent subsocial Anelosimus species from colonizing the lowland rainforest while favouring species with large social groups in this habitat. To this end, we transplanted small groups of a subsocial species, which contain the offspring of a single female, from cloud forest habitat in the centre of its natural range to lower montane rainforest on the range margin and to lowland rainforest outside of the species range. Groups transplanted at the range margin and below their range limit were less likely to disperse and experienced increased mortality. This was correlated with greater rainfall intensity and ant abundance. We show that protection from rainfall enhances the performance of small groups of spiders in the lowland rainforest, and suggest that predation or disturbance by ants may influence the geographical range limits of this species.  相似文献   

16.
Evolution of cooperation and group living in spiders from subsocial family groups may be constrained by their cannibalistic nature. A tendency to avoid cannibalizing kin may facilitate tolerance among spiders and implies the ability to identify relatives. We investigated whether the subsocial spider Stegodyphus lineatus discriminates kin by recording cannibalism among juveniles in experiments during which amount of food and size difference among spiders in groups were varied. We hypothesized that family groups should be less cannibalistic than groups of mixed‐parental origin. Further, we tested whether food‐stress would influence cannibalism rates differently in kin and nonkin groups and the effect of relatedness on cannibalism within groups of spiders of variable size compared with those of homogenous size. In groups of six spiders, more spiders were cannibalized in nonsib groups than in sib groups under low food conditions. A tendency for nonkin biased cannibalism in starved spider pairs supported that kin recognition in S. lineatus is expressed when food is limited. Size variance of individuals within well‐fed groups of siblings and unrelated spiders had no influence on cannibalism rates. Apparently, both hunger and high density are important promoters of cannibalism. In addition to inclusive fitness benefits, we suggest that an ability to avoid cannibalizing kin will favour the evolution of cooperation and group living in phylogenetically pre‐adapted solitary species.  相似文献   

17.
1. Social species in the spider genus Anelosimus predominate in lowland tropical rainforests, while congeneric subsocial species occur at higher elevations or higher latitudes. 2. We conducted a comparative study to determine whether differences in total biomass, insect size or both have been responsible for this pattern. 3. We found that larger average insect size, rather than greater overall biomass per se, is a key characteristic of lowland tropical habitats correlating with greater sociality. 4. Social species occupied environments with insects several times larger than the spiders, while subsocial species nearing dispersal occupied environments with smaller insects in either high or low overall biomass. 5. Similarly, in subsocial spider colonies, individuals lived communally at a time when they were younger and therefore smaller than the average insect landing on their webs. 6. We thus suggest that the availability of large insects may be a critical factor restricting social species to their lowland tropical habitats.  相似文献   

18.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

19.
Cockroaches have always been used to understand the first steps of social evolution in termites because they are close relatives with less complex and integrated social behaviour. Termites are all eusocial and ingroup comparative analysis would be useless to infer the origin of their social behaviour. The cockroach genus Cryptocercus was used as a so-called "prototermite" model because it shows key-attributes similar to the termites (except Termitidae): wood-feeding, intestinal flagellates and subsocial behaviour. In spite of these comparisons between this subsocial cockroach and eusocial termites, the early and remote origin of eusocial behaviour in termites is not well understood yet and the study of other relevant "prototermite" models is however needed. A molecular phylogenetic analysis was carried out to validate a new "prototermite" model, Parasphaeria boleiriana which shows a peculiar combination of these key-attributes. It shows that these attributes of Parasphaeria boleiriana have an independent origin from those of other wood-eating cockroaches and termites. The case of P. boleiriana suggests that a short brood care was selected for with life on an ephemeral wood resource, even with the need for transmission of flagellates. These new phylogenetic insights modify evolutionary hypotheses, contradicting the assumption made with Cryptocercus model that a long brood care is necessary for cooperation between broods in the "shift-in-dependent-care" hypothesis. An ephemeral wood resource is suggested to prompt generation overlap and the evolution of cooperation, even if brood care is shortened.  相似文献   

20.
Species are often classified in discrete categories, such as solitary, subsocial, social and eusocial based on broad qualitative features of their social systems. Often, however, species fall between categories or species within a category may differ from one another in ways that beg for a quantitative measure of their sociality level. Here, we propose such a quantitative measure in the form of an index that is based on three fundamental features of a social system: (1) the fraction of the life cycle that individuals remain in their social group, (2) the proportion of nests in a population that contain multiple vs. solitary individuals and (3) the proportion of adult members of a group that do not reproduce, but contribute to communal activities. These are measures that should be quantifiable in most social systems, with the first two reflecting the tendencies of individuals to live in groups as a result of philopatry, grouping tendencies and intraspecific tolerance, and the third potentially reflecting the tendencies of individuals to exhibit reproductive altruism. We argue that this index can serve not only as a way of ranking species along a sociality scale, but also as a means of determining how level of sociality correlates with other aspects of the biology of a group of organisms. We illustrate the calculation of this index for the cooperative social spiders and the African mole‐rats and use it to analyse how sex ratios and interfemale spacing correlate with level of sociality in spider species in the genus Anelosimus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号