首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper (1) presents an analysis of published data on the molecular nature of spontaneously arising and radiation-induced mutations in mammalian somatic cell systems and (2) examines whether the molecular nature and mechanisms of origin of radiation-induced mutations, in mammalian in vivo and in vitro systems, as currently understood, are consistent with expectations based on the biophysical and microdosimetric properties of ionizing radiation. Depending on the test system (CHO cells, human T lymphocytes and human lymphoid cell line TK6), 80-97% of spontaneous HPRT mutations show normal Southern patterns; the remainder is due to gross changes, predominantly partial (intragenic) deletions. Total gene deletions at the HPRT locus are rare except in the TK6 cell line. At the APRT locus in CHO cells, 80-97% of spontaneous mutations are due to base-pair changes, the remainder being, mostly, partial deletions. The latter can extend upstream in the 5' direction but not beyond the APRT gene in the 3' direction. At the human HLA-A locus (T lymphocytes), the percentage of mutations with normal Southern patterns is lower than that for HPRT, and in the range of 50-60%. At the HLA-A locus, mitotic recombination contributes substantially to the mutation spectrum (approximately 30% of mutations recovered) and this is likely to be true of the TK locus in the TK6 cell line as well. With a few exceptions, most of the radiation-induced mutations show altered Southern patterns and are consistent with their being deletions and/or other gross changes (HPRT, 70-90% (CHO); 50-85% (TK6); 50-75% (T lymphocytes); TK, 60-80% (TK6); HLA-A, 80% (T lymphocytes); DHFR, 100% (CHO]. The exceptions are APRT mutations in CHO cells (16-20% of mutants with deletions or other changes) and HPRT mutations in T lymphocytes from A-bomb survivors (15-25%); the latter finding is consistent with the occurrence of in vivo selection against HPRT mutant cells. In cases of HPRT intragenic deletions analyzed (CHO cells and V79 Chinese hamster cells), there is evidence for a non-random distribution of breakpoints. The spontaneous mutation frequencies vary widely, from about 0.04/10(6) cells (sickle cell mutations at the human HBB locus) to 30.8/10(6) cells (HLA-A mutations in T lymphocytes) and are dependent on the locus, the system employed and a number of other factors. Those for the other loci fall between these limits.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Estimates of genetic risks of radiation exposure of humans are traditionally expressed as expected increases in the frequencies of genetic diseases (single-gene, chromosomal and multifactorial) over and above those of naturally-occurring ones in the population. An important assumption in expressing risks in this manner is that gonadal radiation exposures can cause an increase in the frequency of mutations and that this would result in an increase in the frequency of genetic diseases under study. However, despite compelling evidence for radiation-induced mutations in experimental systems, no increases in the frequencies of genetic diseases of concern or other adverse effects (i.e., those which are not formally classified as genetic diseases), have been found in human studies involving parents who have sustained radiation exposures. The known differences between spontaneous mutations that underlie naturally-occurring single-gene diseases and radiation-induced mutations studied in experimental systems now permit us to address and resolve these issues to some extent. The fact that spontaneous mutations (among which are point mutations and DNA deletions generally restricted to the gene) originate through a number of different mechanisms and that the latter are intimately related to the DNA organization of the genes, are now well-documented. Further, spontaneous mutations include those that cause diseases through loss of function as well as gain of function of genes. In contrast, most radiation-induced mutations studied in experimental systems (although identified through the phenotypes of the marker genes) are predominantly multigene deletions which cause loss of function; the recoverability of an induced deletion in a livebirth seems dependent on whether the gene and the genomic region in which it is located can tolerate heterozygosity for the deletion and yet be compatible with viability. In retrospect, the successful mutation test systems (such as the mouse specific locus test) used in radiation studies have involved genes which are non-essential for survival and are also located in genomic regions, likewise non-essential for survival. In contrast, most of the human genes at which induced mutations have been looked for, do not seem to have these attributes. The inference therefore is that the failure to find induced germline mutations in humans is not due to the resistance of human genes to induced mutations but due to the structural and functional constraints associated with their recoverability in livebirths. Since the risk of inducible genetic diseases in humans is estimated using rates of "recovered" mutations in mice, there is a need to introduce appropriate correction factors to bridge the gap between these rates and the rates at which mutations causing diseases are potentially recoverable in humans. Since the whole genome is the "target" for radiation-induced genetic damage, the failure to find increases in the frequencies of specific single-gene diseases of societal concern does not imply that there are no genetic risks of radiation exposures: the problem lies in delineating the phenotypes of recoverable genetic damage that are recognizable in livebirths. Data from studies of naturally-occurring microdeletion syndromes in humans and those from mouse radiation studies are instructive in this regard. They (i) support the view that growth retardation, mental retardation and multisystem developmental abnormalities are likely to be among the quantitatively more important adverse effects of radiation-induced genetic damage than mutations in a few selected genes and (ii) underscore the need to expand the focus in risk estimation from known genetic diseases (as has been the case thus far) to include these induced adverse developmental effects although most of these are not formally classified as "genetic diseases". (ABSTRACT TRUNCATED)  相似文献   

3.
Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.  相似文献   

4.
This paper recapitulates the advances in the field of genetic risk estimation that have occurred during the past decade and using them as a basis, presents revised estimates of genetic risks of exposure to radiation. The advances include: (i) an upward revision of the estimates of incidence for Mendelian diseases (2.4% now versus 1.25% in 1993); (ii) the introduction of a conceptual change for calculating doubling doses; (iii) the elaboration of methods to estimate the mutation component (i.e. the relative increase in disease frequency per unit relative increase in mutation rate) and the use of the estimates obtained through these methods for assessing the impact of induced mutations on the incidence of Mendelian and chronic multifactorial diseases; (iv) the introduction of an additional factor called the "potential recoverability correction factor" in the risk equation to bridge the gap between radiation-induced mutations that have been recovered in mice and the risk of radiation-inducible genetic disease in human live births and (v) the introduction of the concept that the adverse effects of radiation-induced genetic damage are likely to be manifest predominantly as multi-system developmental abnormalities in the progeny.For all classes of genetic disease (except congenital abnormalities), the estimates of risk have been obtained using a doubling dose of 1 Gy. For a population exposed to low LET, chronic/ low dose irradiation, the current estimates for the first generation progeny are the following (all estimates per million live born progeny per Gy of parental irradiation): autosomal dominant and X-linked diseases, approximately 750-1500 cases; autosomal recessive, nearly zero and chronic multifactorial diseases, approximately 250-1200 cases. For congenital abnormalities, the estimate is approximately 2000 cases and is based on mouse data on developmental abnormalities. The total risk per Gy is of the order of approximately 3000-4700 cases which represent approximately 0.4-0.6% of the baseline frequency of these diseases (738,000 per million) in the population.  相似文献   

5.
This paper reviews the currently available information on naturally occurring Mendelian diseases in man; it is aimed at providing a background and framework for discussion of experimental data on radiation-induced mutations (papers II and III) and for the estimation of the risk of Mendelian disease in human populations exposed to ionizing radiation (paper IV). Current consensus estimates indicate that a total of about 125 per 10(4) livebirths are directly affected by one or another naturally occurring Mendelian disease (autosomal dominants, 95/10(4); X-linked ones, 5/10(4); and autosomal recessives, 25/10(4). These estimates are conservative and take into account conditions which are very rare and for which prevalence estimates are unavailable. Most, although not all, of the recognized "common" dominants have onset in adult ages while most sex-linked and autosomal recessives have onset at birth or in childhood. Autosomal dominant and X-linked diseases (i.e., the responsible mutant alleles) presumed to be maintained in the population due to a balance between mutation and selection are the ones which may be expected to increase in frequency as a result of radiation exposures. Viewed from this standpoint, the above assumption seems safe only for a small proportion of such diseases; for the remainder, there is no easy way to discriminate between different mechanisms that may be responsible or to rigorously exclude some in favor of some others. Mutations in genes that code for enzymic proteins are more often recessive in contrast to those that code for non-enzymic proteins, which are more often dominant. At the molecular level, with recessives, a wide variety of changes is possible and these include specific types of point mutations, small and large intragenic deletions, multilocus deletions and rearrangements. In the case of dominants, however, the kinds of recoverable point mutations and deletion-type changes are less extensive because of functional constraints. The mutational potential of genes varies, depending on the gene, its size, sequence content and arrangement, location and its normal functions, and can be grouped into three groups: those in which only point mutations have been found to occur, those in which only deletions or other gross changes have been recovered and those in which both kinds of changes are known. Molecular data are available for about 75 Mendelian conditions and these suggest that in approximately 50% of them, the changes categorized to date are point mutations and in the remainder, intragenic deletions or other gross changes; there does not seem to be any fundamental difference between dominants and recessives with respect to the underlying molecular defect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Total-body irradiation or renal irradiation is followed by a well-defined sequence of changes in renal function leading eventually to renal failure. Previous studies in a rat model have shown that inhibition of angiotensin-converting enzyme or blockade of angiotensin II receptors can prevent the structural and functional changes that occur after renal irradiation, and that these interventions are particularly important between 3 and 10 weeks after irradiation. We have now shown that in the same rat model, total-body irradiation induces proliferation of renal tubular cells (i.e., an increase in the number of cells staining positive for proliferating cell nuclear antigen) within 5 weeks after irradiation. Treatment with an angiotensin II receptor blocker delays this radiation-induced tubular proliferation and decreases its magnitude. Renal radiation also induces proliferation of glomerular cells, but the relative increase in glomerular proliferation is not as great as that seen in renal tubular cells, and the increase is not delayed or decreased by treatment with an angiotensin II receptor blocker. We hypothesize that angiotensin II receptor blockers exert their beneficial effect in radiation nephropathy by delaying the proliferation (and hence the eventual mitotic death) of renal tubular cells that have been genetically crippled by radiation.  相似文献   

7.
Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G2 phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G1. In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other rearrangements in certain regions of the genome is related to the presence of large segments of repetitive DNA called segmental duplications (also called duplicons or low copy repeats, LCRs) in such regions. The mechanism that is envisaged for the origin of deletions and other rearrangements involves misalignment of region-specific LCRs of homologous chromosomes in meiosis followed by unequal crossing-over (i.e., non-allelic homologous recombination, NAHR). We hypothesize that: (a) in spermatogonial stem cells, NHEJ is probably the principal mechanism underlying the origin of radiation-induced deletions, although SSA and NAHR may also be involved to some extent, especially at low doses; and (b) in irradiated oocytes, NAHR is likely to be the main mechanism for generating deletions. We suggest future research possibilities, including the development of models for identifying regions of the genome that are susceptible to radiation-induced deletions. Such efforts may have particular significance in the context of the estimation of genetic risks of radiation exposure of human females, a problem that is still with us.  相似文献   

8.
This paper is aimed at a synthesis of conclusions and concepts from the first three papers of this series and an inquiry of their relevance to the estimation of the risk of autosomal dominant and X-linked diseases in man, due to exposure to ionizing radiation. For a population under conditions of continuous irradiation, the doubling-dose method (DD method) enables the prediction of the excess risk of dominant and X-linked diseases at equilibrium. Per unit dose, this quantity is the product of the natural prevalence of these diseases (assumed to be 10,000/10(6) livebirths) and the reciprocal of the DD. The DD currently used is 1 Gy and is based primarily on data on the induction of recessive specific-locus mutations in male mice. The estimate of risk to the first generation is derived from that at equilibrium; the figure is about 15% of the equilibrium value (i.e., 15 cases/10(6) livebirths/cGy). With the direct method, the first-generation risk of dominant disease is estimated using data on the induction of dominant skeletal and cataract mutations in male mice and a number of correction factors. The estimates are about 10-20 cases and 0-9 cases, respectively, for irradiation of males and females, per 10(6) livebirths/cGy. In the Japanese studies, no significant adverse genetic effects, attributable to exposure of the parents to the atomic bombs, could be demonstrated with respect to any of the endpoints used. Most of the latter are clinically and socially relevant but mutationally insensitive. On the basis of these data, Neel and colleagues have estimated that the gametic DD for genetic effects of radiation in man is at least about 4-5 times the 1 Gy value thus far used. The concepts, assumptions, and the data-base used with the DD method have been re-examined. Arguments are advanced to support the thesis that ionizing radiation is probably not very efficient in inducing the very specific molecular changes that are known to underlie spontaneous mutations which cause naturally occurring dominant genetic diseases. It is suggested that (i) the DD estimate of 1 Gy that is used to estimate risk for autosomal dominant and X-linked diseases is conservative and (ii) the 1% prevalence figure for these diseases that is used for this purpose may be too high. If these suggestions are correct, then the estimate of risk for the dominant and X-linked diseases may need to be revised downwards.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
T. Tsuchiya 《Genetica》1975,45(4):519-529
Two mutations were obtained in a two-rowed, spring-type barley variety, Asahi No. 5. KM 114 was obtained in the X2 population of X-irradiated dormant seeds (15 Kr) and KM 218 was found in X2 of gamma-irradiated seeds (15 Kr). KM 114 had very short awns, short plant height, almost normal spike size, and narrow and thinner seeds with pointed tip. The mutant gene is Mendelian recessive. KM 218 plants were normal or slightly taller, had somewhat larger spike, with somewhat longer rachis internodes, medium-long awn, and slightly longer, narrower and thinner kernel than those of the parental variety. At maturity, grains are exposed in many seeds (semi-naked kernels). This mutant also has a conspicuous diagnostic trait; the abnormal development of rachilla into extra florets, some of which set seeds. This mutant gene is also Mendelian recessive. Genes for these two mutants are not allelic and are inherited independently as indicated in F2 and F3 analyses. Genes of these two mutations will serve as good marker genes in genetic and linkage studies in barley, because their character expression is consistent and the recessive homozygotes are viable and fertile.  相似文献   

10.
The responsiveness of Mendelian diseases to an increase in the mutation rate is studied by using the concept of the mutation component (MC) of genetic diseases. Algebraic expressions to evaluate MC at any specific generation following either a one-time or a permanent increase in mutation rate are derived and are illustrated with numerical examples. For a one-time increase in mutation rate, the analysis shows that the first generation MC for autosomal dominant diseases is equal to the selection coefficient; this is also true for X-linked diseases (adjusted for the proportion of X-chromosomes in males). For autosomal recessive diseases the first generation MC is substantially smaller than that for autosomal dominants. In subsequent generations MC gradually decays to zero. Under conditions of a permanent increase in the mutation rate, the MC for autosomal dominant, X-linked and completely recessive autosomal disorders progressively increases to reach a value of one at the new equilibrium. For incompletely recessive autosomal disorders, however, the MC at equilibrium can be larger than one. The rates of approach to the new equilibrium are different for the different classes of diseases, dictated by selection and time (in generations) following radiation exposure. The effects of increases in mutation rate on MC are more pronounced for autosomal dominants, followed by X-linked and are far less for autosomal recessives. Even for autosomal dominants, the early generation effects of radiation exposures would not be appreciable unless the heterozygotes have a severely reduced fitness.  相似文献   

11.
Many tumors exhibit extensive chromosomal instability, but karyotypic alterations will be significant in carcinogenesis only by influencing specific oncogenes or tumor suppressor loci within the affected chromosomal segments. In this investigation, the specificity of chromosomal rearrangements attributable to radiation-induced genomic instability is detailed, and a qualitative and quantitative correspondence with mutagenesis is demonstrated. Chromosomal abnormalities preferentially occurred near the site of prior rearrangements, resulting in complex abnormalities, or near the centromere, resulting in deletion or translocation of the entire chromosome arm, but no case of an interstitial chromosomal deletion was observed. Evidence for chromosomal instability in the progeny of irradiated cells also included clonal karyotypic heterogeneity. The persistence of instability was demonstrated for at least 80 generations by elevated mutation rates at the heterozygous, autosomal marker locus tk. Among those TK- mutants that showed a loss of heterozygosity, a statistically significant increase in mutation rate was observed only for those in which the loss of heterozygosity encompasses the telomeric region. This mutational specificity corresponds with the prevalence of terminal deletions, additions, and translocations, and the absence of interstitial deletions, in karyotypic analysis. Surprisingly, the elevated rate of TK- mutations is also partially attributable to intragenic base substitutions and small deletions, and DNA sequence analysis of some of these mutations is presented. Complex chromosomal abnormalities appear to be the most significant indicators of a high rate of persistent genetic instability which correlates with increased rates of both intragenic and chromosomal-scale mutations at tk.  相似文献   

12.
This paper discusses (a) data on the epidemiological and etiological aspects of human congenital abnormalities, (b) the multifactorial threshold model and other models which have been proposed to explain their inheritance patterns and recurrence risks in families and (c) current concepts on mechanisms on the prevalence of heritable variation for quantitative traits in populations.Congenital abnormalities, which afflict an estimated 6% of all live births, are etiologically heterogeneous. The majority of these do not follow Mendelian transmission patterns, but do ‘run’ in families. The multifactorial threshold model is an extension of genetic principles developed for quantitative traits to all-or-none traits; in its simplest formulation, it assumes the existence in the population of an underlying normally distributed ‘liability’ (which is due to numerous genetic and environmental factors acting additively, each contributing a small amount of liability) and of a ‘threshold’ beyond which the individual is affected. For most congenital abnormalities, the nature of these factors remains unknown. Other models assume fewer causal factors although, again, these remain to be identified.The question of how considerable heritable variation for most quantitative / polygenic traits has come to exist is a long-standing one in evolutionary population genetics. Models postulating that its existence is consistent with a balance between recurrent mutation and stabilizing selection or suggesting the possible operation of other mechanisms have been published in the literature.  相似文献   

13.
14.
Genetic risks of radiation exposure of humans are generally expressed as expected increases in the frequencies of genetic diseases over those that occur naturally in the population as a result of spontaneous mutations. Since human data on radiation-induced germ cell mutations and genetic diseases remain scanty, the rates derived from the induced frequencies of mutations in mouse genes are used for this purpose. Such an extrapolation from mouse data to the risk of genetic diseases will be valid only if the average rates of inducible mutations in human genes of interest and the average rates of induced mutations in mice are similar. Advances in knowledge of human genetic diseases and in molecular studies of radiation-induced mutations in experimental systems now question the validity of the above extrapolation. In fact, they (i) support the view that only in a limited number of genes in the human genome, induced mutations may be compatible with viability and hence recoverable in live births and (ii) suggest that the average rate of induced mutations in human genes of interest from the disease point of view will be lower than that assumed from mouse results. Since, at present, there is no alternative to the use of mouse data on induced mutation rates, there is a need to bridge the gap between these and the risk of potentially inducible genetic diseases in human live births.In this paper, we advance the concept of what we refer to here as "the potential recoverability correction factor" (PRCF) to bridge the above gap in risk estimation and present a method to estimate PRCF. In developing the concept of PRCF, we first used the available information on radiation-induced mutations recovered in experimental studies to define some criteria for assessing potential recoverability of induced mutations and then applied these to human genes on a gene-by-gene basis. The analysis permitted us to estimate unweighted PRCFs (i.e. the fraction of genes among the total studied that might contribute to recoverable induced mutations) and weighted PRCFs (i.e. PRCFs weighted by the incidences of the respective diseases). The estimates are: 0.15 (weighted) to 0.30 (unweighted) for autosomal dominant and X-linked diseases and 0.02 (weighted) to 0.09 (unweighted) for chronic multifactorial diseases. The PRCF calculations are unnecessary for autosomal recessive diseases since the risks projected for the first few generations even without using PRCFs are already very small. For congenital abnormalities, PRCFs cannot be reliably estimated.With the incorporation of PRCF into the equation used for predicting risk, the risk per unit dose becomes the product of four quantities (risk per unit dose=Px(1/DD)xMCxPRCF) where P is the baseline frequency of the genetic disease, 1/DD is the relative mutation risk per unit dose, MC is the mutation component and PRCF is the disease-class-specific potential recoverability correction factor instead of the first three (as has been the case thus far). Since PRCF is a fraction, it is obvious that the estimate of risk obtained with the revised risk equation will be smaller than previously calculated values.  相似文献   

15.
16.
The properties of genetic networks based on a variant of Jacob-Monod type feedback-repression have been examined using digital computer simulation. Single gene loops do not seem feasible as oscillators, but networks with an odd number of genes connected cyclically oscillate over a wide range of conditions.  相似文献   

17.
A new mouse model (Mutatect) that permits detection of mutations at the hprt (hypoxanthine phosphoribosyltransferase) locus is described. It is highly sensitive to detection of mutants induced by clastogenic agents such as ionizing radiation. MN-11 cells are grown as a subcutaneous tumour in C57BL/6 mice for a period of 2 weeks, during which time they can be exposed to mutagenic treatments. Cells taken from the animal are cultured ex vivo and 6-thioguanine (6-TG)-resistant mutant clones can be readily identified and scored. This model system may have special utility for detecting multi-locus deletion events (chromosomal mutations) induced by high LET forms of radiation that might be encountered in space.  相似文献   

18.
This paper provides a broad overview of the epidemiological and genetical aspects of common multifactorial diseases in man with focus on three well-studied ones, namely, coronary heart disease (CHD), essential hypertension (EHYT) and diabetes mellitus (DM). In contrast to mendelian diseases, for which a mutant gene either in the heterozygous or homozygous condition is generally sufficient to cause disease, for most multifactorial diseases, the concepts of `genetic susceptibility' and `risk factors' are more appropriate. For these diseases, genetic susceptibility is heterogeneous. The well-studied diseases such as CHD permit one to conceptualize the complex relationships between genotype and phenotype for chronic multifactorial diseases in general, namely that allelic variations in genes, through their products interacting with environmental factors, contribute to the quantitative variability of biological risk factor traits and thus ultimately to disease outcome. Two types of such allelic variations can be distinguished, namely those in genes whose mutant alleles have (i) small to moderate effects on the risk factor trait, are common in the population (polymorphic alleles) and therefore contribute substantially to the variability of biological risk factor traits and (ii) profound effects, are rare in the population and therefore contribute far less to the variability of biological risk factor traits. For all the three diseases considered in this review, a positive family history is a strong risk factor. CHD is one of the major contributors to mortality in most industrialized countries. Evidence from epidemiological studies, clinical correlations, genetic hyperlipidaemias etc., indicate that lipids play a key role in the pathogenesis of CHD. The known lipid-related risk factors include: high levels of low density lipoprotein cholesterol, low levels of high density lipoprotein cholesterol, high apoB levels (the major protein fraction of the low density lipoprotein particles) and elevated levels of Lp(a) lipoprotein. Among the risk factors which are not related to lipids are: high levels of homocysteine, low activity of paraoxonase and possibly also elevated plasma fibrinogen levels. In addition to the above, hypertension, diabetes and obesity (which themselves have genetic determinants) are important risk factors for CHD. Among the environmental risk factors are: high dietary fat intake, smoking, stress, lack of exercise etc. About 60% of the variability of the plasma cholesterol is genetic in origin. While a few genes have been identified whose mutant alleles have large effects on this trait (e.g., LDLR, familial defective apoB-100), variability in cholesterol levels among individuals in most families is influenced by allelic variation in many genes (polymorphisms) as well as environmental exposures. A proportion of this variation can be accounted for by two alleles of the apoE locus that increase (ϵ4) and decrease (ϵ2) cholesterol levels, respectively. A polymorphism at the apoB gene (XbaI) also has similar effects, but is probably not mediated through lipids. High density lipoprotein cholesterol levels are genetically influenced and are related to apoA1 and hepatic lipase (LIPC) gene functions. Mutations in the apoA1 gene are rare and there are data which suggest a role of allelic variation at or linked LIPC gene in high density lipoprotein cholesterol levels. Polymorphism at the apoA1–C3 loci is often associated with hypertriglyceridemia. The apo(a) gene which codes for Lp(a) is highly polymorphic, each allele determining a specific number of multiple tandem repeats of a unique coding sequence known as Kringle 4. The size of the gene correlates with the size of the Lp(a) protein. The smaller the size of the Lp(a) protein, the higher are the Lp(a) levels. Hyperhomocyst(e)inemia is a risk factor for myocardial infarction, stroke and peripheral vascular disease, but the precise nature and intensity of this association, the biochemical mechanisms involved and the role of environmental factors remain to be fully elucidated. Recently, it has been suggested that polymorphisms in genes that code for paraoxonase may need to be added to the list of genetic risk factors for CHD. There are suggestions that high plasma fibrinogen levels (which is exacerbated by smoking which also lowers high density lipoprotein cholesterol levels) may constitute yet another risk factor for CHD. Essential hypertension (EHYT) affects some 10–25% of the people of the industrial world. Its clinical relevance stems from the fact that it is one of the major risk factors for cardiovascular and renal diseases, especially, stroke, coronary heart disease and end-stage renal disease. The role of genetic factors in EHYT is clearly indicated by family studies in which correlations in blood pressure levels have been studied. The variations in the range and magnitude of these correlations however suggest that other, environmental factors must play an important role and which vary from individual to individual and population to population. No major genes controlling blood pressure have been identified. However during the past five years or so, linkage and association studies have shown that there are at least three gene loci, polymorphism at which may contribute to EHYT: these include the AGT, AT1 and ACE genes. Additionally, the molecular basis of three rare mendelian disorders associated with hypertension, namely those involved in glucocorticosteroid-remediable aldosteronism (GRA), Liddle syndrome and apparent mineralocorticosteroid excess (AME) have been delineated. On the basis of clinical phenotypes, four types of diabetes mellitus are distinguished, of which insulin-dependent diabetes melltius (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM) have been the subject of extensive studies. IDDM is a group of heterogeneous diseases probably resulting from exposure to some environmental agent(s) in those individuals with a genetically-determined susceptibility. IDDM is the result of the destruction of insulin-producing β-cells of the pancreas, principally by immunologically-mediated (autoimmune) mechanisms. The major defined risk factor is genetic susceptibility: apart from IDDM1 (linked to the HLA complex) and IDDM2 (in the insulin gene region) at least 10 other genes are involved, mutations at which cause susceptibility to IDDM. There is recent evidence for the possible involvement of an endogenous retrovirus in the aetiology of acute onset IDDM. NIDDM is a very common disease and its prevalence varies in different populations. As in the case of IDDM, its major determinant is genetic susceptibility. Compared to IDDM, the concordance rates in monozygotic twins and risks to first-degree relatives are higher. With the exception of MODY subtype with earlier onset, most cases have onset in middle or late life. The known geographical variations in the prevalence and studies of migrant populations suggest that environmental factors might also be important. The number of genes mutations at which cause susceptibility to NIDDM is not yet known and so far, one putative major gene locus has recently been identified in a Mexican–American population. Several candidate genes are currently being investigated. The available data indicate that some of the genes act through inherited susceptibility to insulin resistance and to decreased capacity for insulin secretion. Rare forms are due to dominant mutations i.e., the MODY diabetes and rarer still are forms due to the production of abnormal insulin due to mutations in the insulin gene itself. Finally, a small proportion of diabetes may be due to mutations in the mitochondrial genome. The attributes, risk factors and interrelationships between the three diseases considered in this review clearly show that the task of using this information for reliably predicting the risk of any of these diseases is formidable, even for a scenario of no radiation exposures, not to mention radiation scenarios. Nonetheless, these data provide a useful framework for developing models aimed at quantifying the response of these diseases to an increase in mutation rate due to radiation. One such model is discussed in a later paper of this series.  相似文献   

19.
Mathematical models have been constructed which relate the depth of the culture fluid overlay to the oxygen available to mammalian cells cultured under static conditions. These models suggest that the maintenance of a given rate of oxygen utilization by some culture systems may be critically depended on this fluid depth and on the solubility and rate of diffusion of oxygen in the culture fluid. The importance of these concepts as applied to the isolation and growth of differentiated cells representative of the tissue of origin are noted.  相似文献   

20.
Mutations controlling the resistance to 6-mercaptopurine (6-M) and the ability to multiply in a medium with a low concentration of glucose (“glucose-independent” mutants) were induced in cultured Chinese hamster cells by N-nitrosomethylurea (NMU), 5-bromodeoxyuridine (BUdR), UV and X-rays. The chemical agents were found to be very active in induction of mutations to 6-M resistance (NMU and BUdR) and mutations of “glucose independence” (NMU). These agents increase the yield of mutations as compared to the spontaneous mutation rate by about two orders of magnitude. The induced rate of 6-M-resistant mutations by X-rays was 2.0 ? 10−7 per viable cell per roentgen. BUdR approximately equally increases the cell's sensitivity to both inactivating and mutagenic action of X-rays. The maximum induction of mutations to 6-M resistance by UV was observed at 100 erg/mm2. This dose leads to 1 16-fold increase of the mutation frequency as compared to the spontaneous rate. Further increase of the UV dose up to 200 erg/mm2 resulted in a lower yield of mutations per dose unit. The highest yield of mutations to 6-M resistance induced by NMU, BUdR and X-rays was observed if cells were plated in selective medium several generations after the mutagenic treatment. The maximum yield of mutations to 6-M resistance induced by UV and of glucose-independence induced by NMU was recorded if cells were transferred to selective media immediately after treatment. The kinetics of expression of mutations and the decline of their number observed after prolonged incubation of treated cells in nonselective conditions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号