首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mass-action epidemic models are the foundation of the majority of studies of disease dynamics in human and animal populations. Here, a kinetic model of mobile susceptible and infective individuals in a two-dimensional domain is introduced, and an examination of the contact process results in a mass-action-like term for the generation of new infectives. The conditions under which density dependent and frequency dependent transmission terms emerge are clarified. Moreover, this model suggests that epidemics in large mobile spatially distributed populations can be well described by homogeneously mixing mass-action models. The analysis generates an analytic formula for the contact rate (β) and the basic reproductive ratio (R0) of an infectious pathogen, which contains a mixture of demographic and epidemiological parameters. The analytic results are compared with a simulation and are shown to give good agreement. The simulation permits the exploration of more realistic movement strategies and their consequent effect on epidemic dynamics.  相似文献   

2.
3.
An epidemic model in a patchy environment   总被引:6,自引:0,他引:6  
An epidemic model is proposed to describe the dynamics of disease spread among patches due to population dispersal. We establish a threshold above which the disease is uniformly persistent and below which disease-free equilibrium is locally attractive, and globally attractive when both susceptible and infective individuals in each patch have the same dispersal rate. Two examples are given to illustrate that the population dispersal plays an important role for the disease spread. The first one shows that the population dispersal can intensify the disease spread if the reproduction number for one patch is large, and can reduce the disease spread if the reproduction numbers for all patches are suitable and the population dispersal rate is strong. The second example indicates that a population dispersal results in the spread of the disease in all patches, even though the disease can not spread in each isolated patch.  相似文献   

4.
Global analysis of an epidemic model with nonmonotone incidence rate   总被引:2,自引:0,他引:2  
In this paper we study an epidemic model with nonmonotonic incidence rate, which describes the psychological effect of certain serious diseases on the community when the number of infectives is getting larger. By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists.  相似文献   

5.
This paper analyses the dynamics of infectious disease with a concurrent spread of disease awareness. The model includes local awareness due to contacts with aware individuals, as well as global awareness due to reported cases of infection and awareness campaigns. We investigate the effects of time delay in response of unaware individuals to available information on the epidemic dynamics by establishing conditions for the Hopf bifurcation of the endemic steady state of the model. Analytical results are supported by numerical bifurcation analysis and simulations.  相似文献   

6.
Global dynamics of an SEIR epidemic model with saturating contact rate   总被引:9,自引:0,他引:9  
Heesterbeek and Metz [J. Math. Biol. 31 (1993) 529] derived an expression for the saturating contact rate of individual contacts in an epidemiological model. In this paper, the SEIR model with this saturating contact rate is studied. The basic reproduction number R0 is proved to be a sharp threshold which completely determines the global dynamics and the outcome of the disease. If R0 < or =1, the disease-free equilibrium is globally stable and the disease always dies out. If R0 > 1, there exists a unique endemic equilibrium which is globally stable and the disease persists at an endemic equilibrium state if it initially exists. The contribution of the saturating contact rate to the basic reproduction number and the level of the endemic equilibrium is also analyzed.  相似文献   

7.
Analysis of an SEIRS epidemic model with two delays   总被引:29,自引:0,他引:29  
 A disease transmission model of SEIRS type with exponential demographic structure is formulated. All newborns are assumed susceptible, there is a natural death rate constant, and an excess death rate constant for infective individuals. Latent and immune periods are assumed to be constants, and the force of infection is assumed to be of the standard form, namely proportional to I(t)/N(t) where N(t) is the total (variable) population size and I(t) is the size of the infective population. The model consists of a set of integro-differential equations. Stability of the disease free proportion equilibrium, and existence, uniqueness, and stability of an endemic proportion equilibrium, are investigated. The stability results are stated in terms of a key threshold parameter. More detailed analyses are given for two cases, the SEIS model (with no immune period), and the SIRS model (with no latent period). Several threshold parameters quantify the two ways that the disease can be controlled, by forcing the number or the proportion of infectives to zero. Received 8 May 1995; received in revised form 7 November 1995  相似文献   

8.
Global asymptotic stability of a periodic solution to an epidemic model   总被引:1,自引:0,他引:1  
In this paper a periodic delay differential equation with spatial spread is investigated. This equation can be used to model the growth of malaria which is transmitted by a mosquito. Using monotone techniques, it is shown that the following bifurcation holds: either the disease dies out or the density of infectious people tends to a spatially homogeneous, time periodic and positive solution.Research partially supported by NSF Grant MCS 810-4837  相似文献   

9.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

10.
Transportation amongst cities is found as one of the main factors which affect the outbreak of diseases. To understand the effect of transport-related infection on disease spread, an SEIRS (Susceptible, Exposed, Infectious, Recovered) epidemic model for two cities is formulated and analyzed. The epidemiological threshold, known as the basic reproduction number, of the model is derived. If the basic reproduction number is below unity, the disease-free equilibrium is locally asymptotically stable. Thus, the disease can be eradicated from the community. There exists an endemic equilibrium which is locally asymptotically stable if the reproduction number is larger than unity. This means that the disease will persist within the community. The results show that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, the result shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. Further, the formulated model is applied to the real data of SARS outbreak in 2003 to study the transmission of disease during the movement between two regions. The results show that the transport-related infection is effected to the number of infected individuals and the duration of outbreak in such the way that the disease becomes more endemic due to the movement between two cities. This study can be helpful in providing the information to public health authorities and policy maker to reduce spreading disease when its occurs.  相似文献   

11.
The aim of this paper is to analyze an SIRVS epidemic model in which pulse vaccination strategy (PVS) is included. We are interested in finding the basic reproductive number of the model which determine whether or not the disease dies out. The global attractivity of the disease-free periodic solution (DFPS for short) is obtained when the basic reproductive number is less than unity. The disease is permanent when the basic reproductive number is greater than unity, i.e., the epidemic will turn out to endemic. Our results indicate that the disease will go to extinction when the vaccination rate reaches some critical value.  相似文献   

12.
A model of an Ebola epidemic is developed with infected individuals structured according to disease age. The transmission of the infection is tracked by disease age through an initial incubation (exposed) phase, followed by an infectious phase with variable transmission infectiousness. The removal of infected individuals is dependent on disease age, with three types of removal rates: (1) removal due to hospitalization (isolation), (2) removal due to mortality separate from hospitalization, and (3) removal due to recovery separate from hospitalization. The model is applied to the Ebola epidemics in Sierra Leone and Guinea. Model simulations indicate that successive stages of increased and earlier hospitalization of cases have resulted in mitigation of the epidemics.  相似文献   

13.
In this paper, we develop a new approach to deal with asymptotic behavior of the age-structured homogeneous epidemic systems and discuss its application to the MSEIR epidemic model. For the homogeneous system, there is no attracting nontrivial equilibrium, instead we have to examine existence and stability of persistent solutions. Assuming that the host population dynamics can be described by the stable population model, we rewrite the basic system into the system of ratio age distribution, which is the age profile divided by the stable age profile. If the host population has the stable age profile, the ratio age distribution system is reduced to the normalized system. Then we prove the stability principle that the local stability or instability of steady states of the normalized system implies that of the corresponding persistent solutions of the original homogeneous system. In the latter half of this paper, we prove the threshold and stability results for the normalized system of the age-structured MSEIR epidemic model.   相似文献   

14.
15.
 In this paper, known results on optimal intervention policies for the general stochastic epidemic model are extended to epidemic models with more general infection and removal rate functions. We consider first policies allowing for the isolation of any number of infectives from the susceptible population at any time, secondly policies allowing for the immunisation of the entire susceptible population at any time, and finally policies allowing for either of these interventions. In each case the costs of infection, isolation and immunisation are assumed to have a particular, rather simple, form. Sufficient conditions are given on the infection and removal rate functions of the model for the optimal policies to take the same simple form as in the case of the general stochastic epidemic model. More general costs are briefly discussed, and some numerical examples given. Finally, we discuss possible directions for further work. Received: 16 February 1999  相似文献   

16.
In this paper, an SEIS epidemic model is proposed to study the effect of transport-related infection on the spread and control of infectious disease. New result implies that traveling of the exposed (means exposed but not yet infectious) individuals can bring disease from one region to other regions even if the infectious individuals are inhibited from traveling among regions. It is shown that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

17.
Several theoretical studies on disease propagation assume that individuals belonging to different groups regarding their health conditions are homogeneously distributed over the space. This is the well-known homogenous mixing assumption, which supports epidemiological models written in terms of ordinary differential or difference equations. Here, we consider that the host population infected by a contagious pathogen is composed by two groups with distinct traits and habits, which can be homogeneously mixed or not. The pathogen propagation is modeled by using an asynchronous probabilistic cellular automaton. Our main goal is to examine how a heterogeneous spatial distribution of these groups affects the endemic state. We noted that homogeneous distribution favors the occurrence of oscillations in the population composition. Surprisingly, we found out that the propagation dynamics of the heterogeneous distribution can also be described by a set of ordinary difference equations.  相似文献   

18.
The purpose of this research was to further investigate the hydrodynamics of the United States Pharmacopeia (USP) paddle dissolution apparatus using a previously generated computational fluid dynamics (CFD) model. The influence of paddle rotational speed on the hydrodynamics in the dissolution vessel was simulated. The maximum velocity magnitude for axial and tangential velocities at different locations in the vessel was found to increase linearly with the paddle rotational speed. Path-lines of fluid mixing, which were examined from a central region at the base of the vessel, did not reveal a region of poor mixing between the upper cylin-drical and lower hemispherical volumes, as previously speculated. Considerable differences in the resulting flow patterns were observed for paddle rotational speeds between 25 and 150 rpm. The approximate time required to achieve complete mixing varied between 2 to 5 seconds at 150 rpm and 40 to 60 seconds at 25 rpm, although complete mixing was achievable for each speed examined. An analysis of CFD-generated velocities above the top surface of a cylindrical compact positioned at the base of the vessel, below the center of the rotating paddle, revealed that the fluid in this region was undergoing solid body rotation. An examination of the velocity boundary layers adjacent to the curved surface of the compact revealed large peaks in the shear rates for a region within∼3 mm from the base of the compact, consistent with a ‘grooving’ effect, which had been previously seen on the surface of compacts following dissolution, associated with a higher dissolution rate in this region.  相似文献   

19.
We analyse the mean-variance scaling of reproductive output for a previously published forest model. The model relates individual reproductive effort and pollen limitation to the degree of synchrony in reproduction throughout a forest. We show that the exponent of Taylor's power law reflects the degree of synchrony of reproduction because it indicates the covariance of reproductive behavior. Further, we are able to relate the three components of masting, individual variability, population variability and synchrony in reproductive output, using Taylor's power law. Therefore Taylor's power law can be used as a synoptic index of masting.  相似文献   

20.
In this paper the optimal control strategies of an SIR (susceptible–infected–recovered) epidemic model with time delay are introduced. In order to do this, we consider an optimally controlled SIR epidemic model with time delay where a control means treatment for infectious hosts. We use optimal control approach to minimize the probability that the infected individuals spread and to maximize the total number of susceptible and recovered individuals. We first derive the basic reproduction number and investigate the dynamical behavior of the controlled SIR epidemic model. We also show the existence of an optimal control for the control system and present numerical simulations on real data regarding the course of Ebola virus in Congo. Our results indicate that a small contact rate(probability of infection) is suitable for eradication of the disease (Ebola virus) and this is one way of optimal treatment strategies for infectious hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号