首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Zhu J  Jiang Z  Gao F  Hu X  Zhou L  Chen J  Luo H  Sun J  Wu S  Han Y  Yin G  Chen M  Han Z  Li X  Huang Y  Zhang W  Zhou F  Chen T  Fa P  Wang Y  Sun L  Leng H  Sun F  Liu Y  Ye M  Yang H  Cai Z  Gui Y  Zhang X 《PloS one》2011,6(11):e28223
  相似文献   

4.

Background

ETV6/RUNX1 (E/R) (also known as TEL/AML1) is the most frequent gene fusion in childhood acute lymphoblastic leukemia (ALL) and also most likely the crucial factor for disease initiation; its role in leukemia propagation and maintenance, however, remains largely elusive. To address this issue we performed a shRNA-mediated knock-down (KD) of the E/R fusion gene and investigated the ensuing consequences on genome-wide gene expression patterns and deducible regulatory functions in two E/R-positive leukemic cell lines.

Findings

Microarray analyses identified 777 genes whose expression was substantially altered. Although approximately equal proportions were either up- (KD-UP) or down-regulated (KD-DOWN), the effects on biological processes and pathways differed considerably. The E/R KD-UP set was significantly enriched for genes included in the “cell activation”, “immune response”, “apoptosis”, “signal transduction” and “development and differentiation” categories, whereas in the E/R KD-DOWN set only the “PI3K/AKT/mTOR signaling” and “hematopoietic stem cells” categories became evident. Comparable expression signatures obtained from primary E/R-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories “stem cell properties”, “B-cell differentiation”, “immune response”, “cell adhesion” and “DNA damage” with RT-qPCR.

Conclusion

Our analyses provide the first preliminary evidence that the continuous expression of the E/R fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets.  相似文献   

5.
6.

Background

Recent evidence suggests that lipid pathway is altered in many human tumours. In Burkitt lymphoma this is reflected by the presence of lipid droplets which are visible in the cytoplasm of neoplastic cells in cytological preparations. These vacuoles are not identifiable in biopsy section as lipids are “lost” during tissue processing.

Methods and Results

In this study we investigated the expression of genes involved in lipid metabolism, at both RNA and protein level in Burkitt lymphoma and in other B-cell aggressive lymphoma cases. Gene expression profile indicated a significant over-expression of the adipophilin gene and marked up-regulation of other genes involved in lipid metabolism in Burkitt lymphoma. These findings were confirmed by immunohistochemistry on a series od additional histological samples: 45 out of 47 BL cases showed strong adipophilin expression, while only 3 cases of the 33 of the not-Burkitt lymphoma category showed weak adipophilin expression (p<0.05).

Conclusions

Our preliminary results suggest that lipid metabolism is altered in BL, and this leads to the accumulation of lipid vacuoles. These vacuoles may be specifically recognized by a monoclonal antibody against adipophilin, which may therefore be a useful marker for Burkitt lymphoma because of its peculiar expression pattern. Moreover this peptide might represent an interesting candidate for interventional strategies.  相似文献   

7.
N Kumar  H Cai  C von Mering  M Baudis 《PloS one》2012,7(8):e43689

Background

Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems.

Principal Findings

We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions.

Conclusions

Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.  相似文献   

8.
9.

Background

Dicer, an RNase III-type endonuclease, is the key enzyme involved in RNA interference and microRNA pathways. Aberrant expression of Dicer is reported in several human cancers. Our aim was to assess the prognostic role of Dicer in breast cancer.

Methods

The entire series comprised 666 invasive breast cancers (IBCs), 480 DCIS cases (397 associated with IBC and 83 pure DCIS) and 305 lymph node metastases. Cytoplasmic Dicer expression by immunohistochemistry was scored as negative (no staining) and positive (weak, moderate or strong staining).

Results

Dicer staining was assessable in 446 IBC, 128 DCIS and 101 lymph node metastases. Expression of Dicer was observed in 33% (145/446) of IBCs, 34% (44/128) of DCIS and 57% (58/101) of lymph node metastases. Dicer expression was increased in nodal metastases compared to primary tumours (p<0.001); and was associated with ER negativity (p<0.001), HER2 positivity (p<0.001), high Ki67 labeling index (p<0.001) and expression of basal-like biomarkers (p = 0.002). Dicer positivity was more frequent in the HER2 overexpressing (p<0.001) and basal-like (p = 0.002) subtypes compared to luminal A subtype. Dicer expression was associated with reduced overall survival (OS) on univariate analysis (p = 0.058) and remained an independent predictor of OS on multivariate analysis (HR 2.84, 95% CI 1.43–5.62, p = 0.003), with nodal status (HR 2.61, 95% CI 1.18–5.80, p = 0.018) and PR (HR 0.28, 95% CI 0.13–0.59, p = 0.001). Further, moderate or strong expression of Dicer was associated with improved disease-free survival in the HER2-overexpressing subtype compared to negative or weak expression (p = 0.038).

Conclusion

Deregulated Dicer expression is associated with aggressive tumour characteristics and is an independent prognostic factor for OS. Our findings suggest that Dicer is an important prognostic marker in breast cancer and that its prognostic role may be subtype specific.  相似文献   

10.
X Shen  Z He  H Li  C Yao  Y Zhang  L He  S Li  J Huang  Z Guo 《PloS one》2012,7(9):e44822

Background

Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings

Based on genome-wide methylation data for five cancer types, we showed that genes with promoter hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter hypomethylation. Functions related to “developmental processes” and “regulation of biology processes” were significantly enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to “cell killing” and “response to stimulus”, including immune and inflammatory response, were associated with an enrichment of hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types. These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis.

Conclusions

Genes with promoter hypermethylation and hypomethylation are highly consistent in function across different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and immunotherapy of cancer.  相似文献   

11.

Background

This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types.

Results

The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for “cell cycle” and “ECM (extracellular matrix) organization” Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the “cell cycle” and “ECM” signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified.

Conclusions

Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1403-x) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Anaplastic lymphoma kinase (ALK) genomic alterations have emerged as a potent predictor of benefit from treatment with ALK inhibitors in several cancers. Currently, there is no information about ALK gene alterations in urothelial carcinoma (UC) and its correlation with clinical or pathologic features and outcome.

Methods

Samples from patients with advanced UC and correlative clinical data were collected. Genomic imbalances were investigated by array comparative genomic hybridization (aCGH). ALK gene status was evaluated by fluorescence in situ hybridization (FISH). ALK expression was assessed by immunohistochemistry (IHC) and high-throughput mutation analysis with Oncomap 3 platform. Next generation sequencing was performed using Illumina Genome Analyzer IIx, and Illumina HiSeq 2000 in the FISH positive case.

Results

70 of 96 patients had tissue available for all the tests performed. Arm level copy number gains at chromosome 2 were identified in 17 (24%) patients. Minor copy number alterations (CNAs) in the proximity of ALK locus were found in 3 patients by aCGH. By FISH analysis, one of these samples had a deletion of the 5′ALK. Whole genome next generation sequencing was inconclusive to confirm the deletion at the level of the ALK gene at the coverage level used. We did not observe an association between ALK CNA and overall survival, ECOG PS, or development of visceral disease.

Conclusions

ALK genomic alterations are rare and probably without prognostic implications in UC. The potential for testing ALK inhibitors in UC merits further investigation but might be restricted to the identification of an enriched population.  相似文献   

13.

Background

Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes in pancreatic cancer.

Materials and Methods

We used array comparative genomic hybridization (array CGH) to identify recurrent genomic alterations and validated the protein expression of selected genes by immunohistochemistry.

Results

Sixteen gains and thirty-two losses occurred in more than 30% and 60% of the tumors, respectively. High-level amplifications at 7q21.3–q22.1 and 19q13.2 and homozygous deletions at 1p33–p32.3, 1p22.1, 1q22, 3q27.2, 6p22.3, 6p21.31, 12q13.2, 17p13.2, 17q21.31 and 22q13.1 were identified. Especially, amplification of AKT2 was detected in two carcinomas and homozygous deletion of CDKN2C in other two cases. In 15 independent validation samples, we found that AKT2 (19q13.2) and MCM7 (7q22.1) were amplified in 6 and 9 cases, and CAMTA2 (17p13.2) and PFN1 (17p13.2) were homozygously deleted in 3 and 1 cases. AKT2 and MCM7 were overexpressed, and CAMTA2 and PFN1 were underexpressed in pancreatic cancer tissues than in morphologically normal operative margin tissues. Both GISTIC and Genomic Workbench software identified 22q13.1 containing APOBEC3A and APOBEC3B as the only homozygous deletion region. And the expression levels of APOBEC3A and APOBEC3B were significantly lower in tumor tissues than in morphologically normal operative margin tissues. Further validation showed that overexpression of PSCA was significantly associated with lymph node metastasis, and overexpression of HMGA2 was significantly associated with invasive depth of pancreatic cancer.

Conclusion

These recurrent genomic changes may be useful for revealing the mechanism of pancreatic carcinogenesis and providing candidate biomarkers.  相似文献   

14.

Introduction

In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line.

Methods

We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb).

Results

Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival.

Conclusion

Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses.  相似文献   

15.

Background

The process of metastasis involves a series of steps and interactions between the tumor embolus and the microenvironment. Key alterations in adhesion molecules are known to dictate progression from the invasive to malignant phenotype followed by colonization at a distant site. The invasive phenotype results from the loss of expression of the E-cadherin adhesion molecule, whereas the malignant phenotype is associated with an increased expression of the carbohydrate ligand-binding epitopes, (e.g. Sialyl Lewis x/a) that bind endothelial E-selectin of the lymphatics and vasculature.

Methodology

Our study analyzed the expression of two adhesion molecules, E-cadherin and Sialyl Lewis x (sLex), in both a canine mammary carcinoma and human inflammatory breast cancer (IBC) model, using double labelled immunofluorescence staining.

Results

Our results demonstrate that canine mammary carcinoma and human IBC exhibit an inversely correlated cellular expression of E-cadherin and sLex within the same tumor embolus.

Conclusions

Our results in these two comparative models (canine and human) suggest the existence of a biologically coordinated mechanism of E-cadherin and sLex expression (i.e. molecular plasticity) essential for tumor establishment and metastatic progression.  相似文献   

16.
17.

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1146) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.

Background

The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen compounds for anticancer activity. We recently clustered genes based on correlation of expression profiles across the NCI-60. Many of the resulting clusters were characterized by cancer-associated biological functions. The set of curated glioblastoma (GBM) gene expression data from the Cancer Genome Atlas (TCGA) initiative has recently become available. Thus, we are now able to determine which of the processes are robustly shared by both the immortalized cell lines and clinical cancers.

Results

Our central observation is that some sets of highly correlated genes in the NCI-60 expression data are also highly correlated in the GBM expression data. Furthermore, a “double fishing” strategy identified many sets of genes that show Pearson correlation ≥0.60 in both the NCI-60 and the GBM data sets relative to a given “bait” gene. The number of such gene sets far exceeds the number expected by chance.

Conclusion

Many of the gene-gene correlations found in the NCI-60 do not reflect just the conditions of cell lines in culture; rather, they reflect processes and gene networks that also function in vivo. A number of gene network correlations co-occur in the NCI-60 and GBM data sets, but there are others that occur only in NCI-60 or only in GBM. In sum, this analysis provides an additional perspective on both the utility and the limitations of the NCI-60 in furthering our understanding of cancers in vivo.  相似文献   

20.

Background

Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs). These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI.

Methods and Findings

We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18%) urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41%) urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29%) of 66 samples with no evidence of IBCs (p < 0.001). Of 65 urines from patients with E. coli infections, 14 (22%) had evidence of IBCs and 29 (45%) had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria.

Conclusions

The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The findings support the occurrence of an intracellular bacterial niche in some women with cystitis that may have important implications for UTI recurrence and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号