首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Glucosamine synthase (GlmS) converts fructose-6-phosphate to glucosamine-6-phosphate. Overexpression of GlmS in Escherichia coli increased synthesis of glucosamine-6-P, which was dephosphorylated and secreted as glucosamine into the growth medium. The E. coli glmS gene was improved through error-prone polymerase chain reaction (PCR) in order to develop microbial strains for fermentation production of glucosamine. Mutants producing higher levels of glucosamine were identified by a plate cross-feeding assay and confirmed in shake flask cultures. Over 10 mutants were characterized and all showed significantly reduced sensitivity to inhibition by glucosamine-6-phosphate. Ki of mutants ranged from 1.4 to 4.0 mM as compared to 0.56 mM for the wild type enzyme. Product resistance resulted from single mutations (L468P, G471S) and/or combinations of mutations in the sugar isomerase domain. Most overexpressed GlmS protein was found in the form of inclusion bodies. Cell lysate from mutant 2123-72 contained twice as much soluble GlmS protein and enzyme activity as the strain overexpressing the wild type gene. Using the product-resistant mutant, glucosamine production was increased 60-fold.  相似文献   

2.
By inserting a lambda placMu bacteriophage into gene glmS encoding glucosamine 6-phosphate synthetase (GlmS), the key enzyme of amino sugar biosynthesis, a nonreverting mutant of Escherichia coli K-12 that was strictly dependent on exogenous N-acetyl-D-glucosamine or D-glucosamine was generated. Analysis of suppressor mutations rendering the mutant independent of amino sugar supply revealed that the catabolic enzyme D-glucosamine-6-phosphate isomerase (deaminase), encoded by gene nagB of the nag operon, was able to fulfill anabolic functions in amino sugar biosynthesis. The suppressor mutants invariably expressed the isomerase constitutively as a result of mutations in nagR, the locus for the repressor of the nag regulon. Suppression was also possible by transformation of glmS mutants with high-copy-number plasmids expressing the gene nagB. Efficient suppression of the glmS lesion, however, required mutations in a second locus, termed glmX, which has been localized to 26.8 min on the standard E. coli K-12 map. Its possible function in nitrogen or cell wall metabolism is discussed.  相似文献   

3.
Glutamine:fructose-6-phosphate amidotransferase (glucosamine-6-phosphate synthase) catalyzes the first step of the hexosamine pathway required for the biosynthesis of cell wall precursors. The Candida albicans GFA1 gene was cloned by complementing a gfa1 mutation of Saccharomyces cerevisiae (previously known as gcn1-1; W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). GFA1 encodes a predicted protein of 713 amino acids and is homologous to the corresponding gene from S. cerevisiae (72% identity at the nucleotide sequence level) as well as to the genes encoding glucosamine-6-phosphate synthases in bacteria and vertebrates. In cell extracts, the C. albicans enzyme was 4-fold more sensitive than the S. cerevisiae enzyme to UDP-N-acetylglucosamine (an inhibitor of the mammalian enzyme) and 2.5-fold more sensitive to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (a glutamine analog and specific inhibitor of glucosamine-6-phosphate synthase). Cell extracts from the S. cerevisiae gfa1 strain transformed with the C. albicans GFA1 gene exhibited sensitivities to glucosamine-6-phosphate synthase inhibitors that were similar to those shown by the C. albicans enzyme. Southern hybridization indicated that a single GFA1 locus exists in the C. albicans genome. Quantitative Northern (RNA) analysis showed that the expression of GFA1 in C. albicans is regulated during growth: maximum mRNA levels were detected during early log phase. GFA1 mRNA levels increased following induction of the yeast-to-hyphal-form transition, but this was a response to fresh medium rather than to the morphological change.  相似文献   

4.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the first step in the biosynthesis of amino sugars by transferring the amino group from l-glutamine to the acceptor substrate, fructose 6-phosphate, generating the products glucosamine 6-phosphate and glutamic acid. We describe a method for the synthesis and purification of the substrate, fructose 6-phosphate, and methods for a radiometric assay of human GFAT1 that can be performed in either of two formats: a small disposable-column format and a high-throughput 96-well-plate format. The method performed in the column format can detect 1 pmol of glucosamine 6-phosphate, much less than that required by previously published assays that measure GlcN 6-phosphate. The column assay demonstrates a broad linear range with low variability. In both formats, the assay is linear with time and enzyme concentration and is highly reproducible. This method greatly improves the sensitivity and speed with which GFAT1 activity can be measured and facilitates direct kinetic measurement of the transferase activity.  相似文献   

5.
The Rhizobium leguminosarum nodM gene product shows strong homology to the Escherichia coli glmS gene product that catalyses the formation of glucosamine 6-P from fructose 6-P and glutamine. DNA hybridization with nodM indicated that, in addition to nodM on the symbiotic plasmid, another homologous gene was present elsewhere in the R. leguminosarum genome. A glucosamine-requiring mutant was isolated and its auxotrophy could be corrected by two different genetic loci. It could grow without glucosamine when the nodM gene on the symbiotic plasmid was induced or if the cloned nodM gene was expressed from a vector promoter. Alternatively, it could be complemented by a second fragment of R. leguminosarum DNA that carries a region homologous to E. coli glmS. Biochemical assays of glucosamine 6-P formation confirmed that the two R. leguminosarum genes nodM and glmS have interchangeable functions. No nodulation of peas or vetch was observed with a double nodM glmS mutant, and this block occurred at a very early stage since no root-hair deformation or infection threads were seen. Nodulation and root-hair deformation did occur with either the nodM or the glmS mutant, showing that the gene products of either of these genes can be involved in the formation of the lipo-oligosaccharide nodulation signal. However, the glmS mutant formed nodules that had greatly reduced nitrogen fixation. Constitutive expression of nodM restored nitrogen fixation to the glmS mutant. Therefore the reduced nitrogen fixation probably occurs because glmS is absent and nodM is not normally expressed in nodules and, in the absence of glucosamine precursors, normal bacteroid maturation is blocked.  相似文献   

6.
Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.  相似文献   

7.
目的:制备重组谷氨酰胺∶6-磷酸果糖酰胺转移酶(GFAT),检测其活性。方法:利用RT-PCR扩增人肝脏cDNA中GFAT1基因全长片段,克隆到表达载体pET32b中;在大肠杆菌Origami(DE3)中诱导表达,用镍离子螯合柱(Ni-NTA)纯化重组GFAT1;用体外酶学的方法检测GFAT的活性。结果:构建了pET32b-GFAT1质粒,经诱导表达及纯化,得到具有一定生物活性的GFAT。结论:利用原核表达系统可得到具有良好生物学活性的重组人GFAT1。  相似文献   

8.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) has recently been shown to be an insulin-regulated enzyme that plays a key role in the induction of insulin resistance in cultured cells. As a first step in understanding the molecular regulation of this enzyme the human form of this enzyme has been cloned and the functional protein has been expressed in Escherichia coli. A 3.1-kilobase cDNA was isolated which contains the complete coding region of 681 amino acids. Expression of the cDNA in E. coli produced a protein of approximately 77 kDa and increased GFAT activity 4.5-fold over endogenous bacterial levels. Recombinant GFAT activity was inhibited 51% by UDP-GlcNAc whereas bacterial GFAT activity was insensitive to inhibition by UDP-GlcNAc. On the basis of these results we conclude that: 1) functional human GFAT protein was expressed, and 2) the cloned human cDNA encodes both the catalytic and regulatory domains of GFAT since the recombinant GFAT was sensitive to UDP-GlcNAc. Overall, the development of cloned GFAT molecular probes should provide new insights into the development of insulin resistance by allowing quantitation of GFAT mRNA levels in pathophysiological states such as non-insulin-dependent diabetes mellitus and obesity.  相似文献   

9.
10.
Using a genomic library constructed from Saccharomyces cerevisiae, we have identified a gene GFA1 that confers resistance to methylmercury toxicity. GFA1 encodes L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) and catalyzes synthesis of glucosamine-6-phosphate. Transformed yeast cells expressing GFA1 demonstrated resistance to methylmercury but no resistance to p-chloromercuribenzoate, a GFAT inhibitor. The cytotoxicity of methylmercury was inhibited by loading excess glucosamine 6-phosphate into yeast. Considering that GFAT is an essential cellular enzyme, our findings suggest that GFAT is the major target molecule of methylmercury in yeasts. This report is the first to identify the target molecule of methylmercury toxicity in eukaryotic cells.  相似文献   

11.
12.
L-Glutamine:D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction, as reported for more impure preparations [Gosh, S., Blumenthal, H. J., Davidson, E., & Roseman, S. (1960) J. Biol. Chem. 235, 1265]. The enzyme has a Km of 2 mM for fructose 6-phosphate, a Km of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence [Walker, J. E., Gay, J., Saraste, M., & Eberle, N. (1984) Biochem. J. 224, 799]. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation.  相似文献   

13.
14.
酿酒酵母海藻糖合成酶基因的克隆和在大肠村菌中的表达   总被引:2,自引:0,他引:2  
杨波  戴秀玉  周坚 《遗传学报》2001,28(4):372-378
用PCR方法克隆了1.5kb的酿酒母Sacchromyces cerevisiae海藻糖合成酶基因TPSI,将该片段连接到pUC19载体,通过转化分别引入海藻糖合成酶基因缺失和缺陷的大肠杆菌Escherichia coli FF4169 和FF4050,对转化株的质粒DNA酶切分析表明均含有1.5kb PCR克隆片段,生长曲线实验证明,带有克隆片段的转化株在含0.5mol/L NaCl的高渗透压基础培养基中生长良好;用高效液相色谱(HPLC)结合蒸发散射(ELSD)技术测定细胞内海藻糖实验证明转化株能够合成海藻糖。  相似文献   

15.
16.
A recombinant plasmid carrying a 4.6 kg restriction endonuclease NcoI-ClaI fragment of genomic DNA from Escherichia coli K12 was constructed. This plasmid complements the glmS mutation. Subcloning into pUC18 gave plasmid pGM10 encoding the structural gene of glucosamine synthetase, as judged by overexpression of enzyme activity and the isolation in high yield of the pure protein.  相似文献   

17.
18.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme in hexosamine synthesis and has been implicated in the control of growth factor gene expression. We cloned a mouse cDNA which is 91% homologous to the human sequence. The deduced amino-acid sequence shows 98.6% identity to human GFAT. The cDNA is derived from a 7-kb mRNA in the mouse, while there are multiple-sized human mRNAs.  相似文献   

19.
在分子生物技术中,筛选标记基因是遗传转化载体所必备的基本元件之一,其主要功能是在基因操作中进行目标克隆的筛选,以及在应用过程中通过选择压力维持基因重组性状。抗药基因是微生物遗传转化中常用的筛选标记,大肠杆菌载体和一般穿梭载体中通常带有抗药基因。带有抗药基因的工程菌可以被广泛地应用于酶和有机化学品的发酵生产,因为工业发酵过程是在封闭系统中进行的,并且最终产品需要经过提炼。但是当人们需要用基因改良的菌株进行食品和饲料加工、环境修复、病虫害生物防治时,抗药基因类筛选标记应该被禁止使用。因此,发展生物安全性筛选标记成为遗传转化技术推广应用中的一个技术关键。本文介绍常用作筛选标记的抗药基因,以及针对抗药基因的安全性问题而发展的无选择标记的遗传转化技术及生物安全性筛选标记的基因工程技术。葡萄糖胺合成酶基因是近年发展起来的新型生物安全性筛选标记,它弥补了其他营养缺陷互补型和功能附加型筛选标记的缺陷,具有广阔的应用前景。  相似文献   

20.
For measuring glutamine:fructose-6-phosphate amidotransferase (GFAT) activity in cultured cells, an enzyme method -GDH method- was set up with high-efficiency, high-sensitivity and simple operation by determining the formed glutamate. During the process of making samples, reduced glutathione (GSH, 5 mM) and glucose-6-phosphate Na2 (5 mM) were added to the buffer for scraping the cells. The range of protein content in the samples was 80-150 microg. In the GFAT activity assay, the end product reduced acetylpyridine adenine dinucleotide (APADH) was determined at 370 nm directly. The suitable concentrations of the reactants fructose-6-phosphate (F-6-P), glutamine, acetylpyridine adenine dinucleotide (APAD) and glutamate dehydrogenase (GDH) were 0.8, 6 and 0.3 mM and 6 U, respectively. However, the excess of APAD may interfere with the APADH measurement. The reaction time course was 90 min. The GFAT activity in 3T3-L1, L6, HepG2 and HIRc cells were 1.84-8.51 nmol glutamate/mg protein.min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号