首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects in the proton-translocating NADH-quinone oxidoreductase (complex I) of mammalian mitochondria are linked to neurodegenerative disorders. The mechanism leading to cell death elicited by complex I deficiency remains elusive. We have shown that expression of a rotenone-insensitive yeast NADH-quinone oxidoreductase (Ndi1) can rescue mammalian cells from complex I dysfunction. By using the Ndi1 enzyme, we have investigated the key events in the process of cell death using a rat dopaminergic cell line, PC12. We found that complex I inhibition provokes the following events: 1) activation of specific kinase pathways; 2) release of mitochondrial proapoptotic factors, apoptosis inducing factor, and endonuclease G. AS601245, a kinase inhibitor, exhibited significant protection against these apoptotic events. The traditional caspase pathway does not seems to be involved because caspase 3 activation was not observed. Our data suggest that overproduction of reactive oxygen species (ROS) caused by complex I inhibition is responsible for triggering the kinase activation, for the release of the proapoptotic factors, and then for cell death. Nearly perfect prevention of apoptotic cell death by Ndi1 agrees with our earlier observation that the presence of Ndi1 diminishes rotenone-induced ROS generation from complex I. In fact, this study demonstrated that Ndi1 keeps the redox potential high even in the presence of rotenone. Under these conditions, ROS formation by complex I is known to be minimal. Possible use of our cellular model is discussed with regard to development of therapeutic strategies for neurodegenerative diseases caused by complex I defects.  相似文献   

2.
In contrast to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which consists of at least 43 different subunits, the internal rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae is a single polypeptide enzyme. The NDI1 gene was stably transfected into the human embryonal kidney 293 (HEK 293) cells. The transfected NDI1 gene was then transcribed and translated in the HEK 293 cells to produce the functional enzyme. The immunochemical and immunofluorescence analyses indicated that the expressed Ndi1 polypeptide was located to the inner mitochondrial membranes. The expression of Ndi1 did not alter the content of existing complex I in the HEK 293 mitochondria, suggesting that the expressed Ndi1 enzyme does not displace the endogenous complex I. The NADH oxidase activity of the NDI1-transfected HEK 293 cells was not affected by rotenone but was inhibited by flavone. The ADP/O ratios coupled to NADH oxidation were lowered from 2.4 to 1.8 by NDI1-transfection while the ADP/O ratios coupled to succinate oxidation (1.6) were not changed. The NDI1-transfected HEK 293 cells were able to grow in media containing a complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. The potential usefulness of incorporating the Ndi1 protein into mitochondria of human cells is discussed.  相似文献   

3.
Mitochondrial impairment has been collecting more and more attention as a contributing factor to the etiology of Parkinson’s disease. Above all, the NADH-quinone oxidoreductase, complex I, of the respiratory chain seems to be most culpable. Complex I dysfunction is translated to an increased production of reactive oxygen species and a decreased energy supply. In the brain, the dopaminergic neurons are one of the most susceptible cells. Their death is directly linked to the disease apparition. Developing an effective gene therapy is challenged by harmful actions of reactive oxygen species. To overcome this problem a therapeutic candidate must be able to restore the NADH-quinone oxidoreductase activity regardless of how complex I is impaired. Here we discuss the potency of the yeast alternative NADH dehydrogenase, the Ndi1 protein, to reinstate the mitochondrial respiratory chain compensating for disabled complex I and the benefit Ndi1 brings toward retardation of Parkinson’s disease.  相似文献   

4.
Recent studies suggest that dysfunction of the NADH-quinone oxidoreductase (complex I) is associated with a number of human diseases, including neurodegenerative disorders such as Parkinson disease. We have shown previously that the single subunit rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae mitochondria can restore NADH oxidation in complex I-deficient mammalian cells. The Ndi1 enzyme is insensitive to complex I inhibitors such as rotenone and 1-methyl-4-phenylpyridinium ion, known as a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To test the possible use of the NDI1 gene as a therapeutic agent in vivo, we chose a mouse model of Parkinson disease. The NDI1-recombinant adeno-associated virus particles (rAAV-NDI1) were injected unilaterally into the substantia nigra of mice. The animals were then subjected to treatment with MPTP. The degree of neurodegeneration in the nigrostriatal system was assessed immunohistochemically through the analysis of tyrosine hydroxylase and glial fibrillary acidic protein. It was evident that the substantia nigra neurons on the side used for injection of rAAV-NDI1 retained a high level of tyrosine hydroxylase-positive cells, and the ipsilateral striatum exhibited significantly less denervation than the contralateral striatum. Furthermore, striatal concentrations of dopamine and its metabolites in the hemisphere that received rAAV-NDI1 were substantially higher than those of the untreated hemisphere, reaching more than 50% of the normal levels. These results indicate that the expressed Ndi1 protein elicits resistance to MPTP-induced neuronal injury. The present study is the first successful demonstration of complementation of complex I by the Ndi1 enzyme in animals.  相似文献   

5.
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.  相似文献   

6.
Adrienne DeCorby  Leanne C. Sayles 《BBA》2007,1767(9):1157-1163
The NADH:ubiquinone oxidoreductase or complex I of the mitochondrial respiratory chain is an intricate enzyme with a vital role in energy metabolism. Mutations affecting complex I can affect at least three processes; they can impair the oxidation of NADH, reduce the enzyme's ability to pump protons for the generation of a mitochondrial membrane potential and increase the production of damaging reactive oxygen species. We have previously developed a nematode model of complex I-associated mitochondrial dysfunction that features hallmark characteristics of mitochondrial disease, such as lactic acidosis and decreased respiration. We have expressed the Saccharomyces cerevisiae NDI1 gene, which encodes a single subunit NADH dehydrogenase, in a strain of Caenorhabditis elegans with an impaired complex I. Expression of Ndi1p produces marked improvements in animal fitness and reproduction, increases respiration rates and restores mitochondrial membrane potential to wild type levels. Ndi1p functionally integrates into the nematode respiratory chain and mitigates the deleterious effects of a complex I deficit. However, we have also shown that Ndi1p cannot substitute for the absence of complex I. Nevertheless, the yeast Ndi1p should be considered as a candidate for gene therapy in human diseases involving complex I.  相似文献   

7.
Complex I deficiency is difficult to treat because of the size and complexity of the multi-subunit enzyme complex. Mutations or deletions in the mitochondrial genome are not amenable to gene therapy. However, animal studies have shown that yeast-derived internal NADH quinone oxidoreductase (Ndi1) can be delivered as a cell-permeable recombinant protein (Tat-Ndi1) that can functionally replace complex I damaged by ischemia/reperfusion. Current and future treatment of disorders affecting complex I are discussed, including the use of Tat-Ndi1.  相似文献   

8.
It is widely recognized that mitochondrial dysfunction, most notably defects in the NADH-quinone oxidoreductase (complex I), is closely related to the etiology of sporadic Parkinson's disease (PD). In fact, rotenone, a complex I inhibitor, has been used for establishing PD models both in vitro and in vivo. A rat model with chronic rotenone exposure seems to reproduce pathophysiological conditions of PD more closely than acute mouse models as manifested by neuronal cell death in the substantia nigra and Lewy body-like cytosolic aggregations. Using the rotenone rat model, we investigated the protective effects of alternative NADH dehydrogenase (Ndi1) which we previously demonstrated to act as a replacement for complex I both in vitro and in vivo. A single, unilateral injection of recombinant adeno-associated virus carrying the NDI1 gene into the vicinity of the substantia nigra resulted in expression of the Ndi1 protein in the entire substantia nigra of that side. It was clear that the introduction of the Ndi1 protein in the substantia nigra rendered resistance to the deleterious effects caused by rotenone exposure as assessed by the levels of tyrosine hydroxylase and dopamine. The presence of the Ndi1 protein also prevented cell death and oxidative damage to DNA in dopaminergic neurons observed in rotenone-treated rats. Unilateral protection also led to uni-directional rotation of the rotenone-exposed rats in the behavioral test. The present study shows, for the first time, the powerful neuroprotective effect offered by the Ndi1 enzyme in a rotenone rat model of PD.  相似文献   

9.
The Ndi1 enzyme of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. We have shown previously that the NDI1 gene can be functionally expressed in Chinese hamster cells (Seo, B. B., Kitajima-Ihara, T., Chan, E. K., Scheffler, I. E., Matsuno-Yagi, A., and Yagi, T. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 9167-9171) and human embryonal kidney 293 (HEK 293) cells (Seo, B. B., Matsuno-Yagi, A., and Yagi, T. (1999) Biochim. Biochem. Acta 1412, 56-65) and that the Ndi1 protein is capable of compensating respiratory deficiencies caused by defects in the host NADH-quinone oxidoreductase (complex I). To extend the potential use of this enzyme to repair complex I deficiencies in vivo, we constructed a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1). With rAAV-NDI1 as the gene delivery method, we were able to achieve high transduction efficiencies (nearly 100%) even in 143B cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. The NDI1 gene was successfully introduced into non-proliferating human cells using rAAV-NDI1. The expressed Ndi1 protein was shown to be functionally active just as seen for proliferating cells. Furthermore, when cells were cultured under the conditions where energy has to be provided by respiration, the NDI1-transduced cells were able to grow even in the presence of added complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. In contrast, control cells that did not receive the NDI1 gene failed to survive as anticipated. The Ndi1 protein has a great potential as a molecular remedy for complex I defects, and it is highly likely that the same strategy can be extended to correction of other mitochondrial disorders.  相似文献   

10.
This review article is concerned with two on-going research projects in our laboratory, both of which are related to the study of the NADH dehydrogenase enzyme complexes in the respiratory chain. The goal of the first project is to decipher the structure and mechanism of action of the proton-translocating NADH-quinone oxidoreductase (NDH-1) from two bacteria, Paracoccus denitrificans and Thermus thermophilus HB-8. These microorganisms are of particular interest because of the close resemblance of the former (P. denitrificans) to a mammalian mitochondria, and because of the thermostability of the enzymes of the latter (T. thermophilus). The NDH-1 enzyme complex of these and other bacteria is composed of 13 to 14 unlike subunits and has a relatively simple structure relative to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which is composed of at least 42 different subunits. Therefore, the bacterial NDH-1 is believed to be a useful model for studying the mitochondrial complex I, which is understood to have the most intricate structure of all the membrane-associated enzyme complexes. Recently, the study of the NADH dehydrogenase complex has taken on new urgency as a result of reports that complex I defects are involved in many human mitochondrial diseases. Thus the goal of the second project is to develop possible gene therapies for mitochondrial diseases caused by complex I defects. This project involves attempting to repair complex I defects in the mammalian system using Saccharomyces cerevisiae NDI1 genes, which code for the internal, rotenone-insensitive NADH–quinone oxidoreductase. In this review, we will discuss our progress and the data generated by these two projects to date. In addition, background information and the significance of various approaches employed to pursue these research objectives will be described.  相似文献   

11.
Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor–homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H2O2, Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.  相似文献   

12.
G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.  相似文献   

13.
Seo BB  Marella M  Yagi T  Matsuno-Yagi A 《FEBS letters》2006,580(26):6105-6108
Using rat dopaminergic and human neuroblastoma cell lines transduced with the NDI1 gene encoding the internal NADH dehydrogenase (Ndi1) from Saccharomyces cerevisiae, we investigated reactive oxygen species (ROS) generation caused by complex I inhibition. Incubation of non-transduced cells with rotenone elicited oxidative damage to mitochondrial DNA as well as lipid peroxidation. In contrast, oxidative stress was significantly decreased when the cells were transduced with NDI1. Furthermore, mitochondria from the NDI1-transduced cells showed a suppressed rate of ROS formation by the complex I inhibitors. We conclude that the Ndi1 enzyme is able to suppress ROS overproduction from defective complex I.  相似文献   

14.
Opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoK(ATP)-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitochondria, using fluorescent probes that are sensitive to hydrogen peroxide. When mitochondria were treated with the K(ATP) channel openers diazoxide or cromakalim, their ROS production increased by 40-50%, and this effect was blocked by 5-hydroxydecanoate. ROS production exhibited a biphasic dependence on valinomycin concentration, with peak production occurring at valinomycin concentrations that catalyze about the same K(+) influx as K(ATP) channel openers. ROS production decreased with higher concentrations of valinomycin and with all concentrations of a classical protonophoretic uncoupler. Our studies show that the increase in ROS is due specifically to K(+) influx into the matrix and is mediated by the attendant matrix alkalinization. Myxothiazol stimulated mitoK(ATP)-dependent ROS production, whereas rotenone had no effect. This indicates that the superoxide originates in complex I (NADH:ubiquinone oxidoreductase) of the electron transport chain.  相似文献   

15.
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.  相似文献   

16.
NADH:ubiquinone oxidoreductase or complex I is a large multisubunit assembly of the mitochondrial inner membrane that channels high-energy electrons from metabolic NADH into the electron transport chain (ETC). Its dysfunction is associated with a range of progressive neurological disorders, often characterized by a very early onset and short devastating course. To better understand the cytopathological mechanisms of these disorders, we use live cell luminometry and imaging microscopy of patient skin fibroblasts with mutations in nuclear-encoded subunits of the complex. Here, we present an overview of our recent work, showing that mitochondrial membrane potential, Ca(2+) handling and ATP production are to a variable extent impaired among a large cohort of patient fibroblast lines. From the results obtained, the picture emerges that a reduction in cellular complex I activity leads to a depolarization of the mitochondrial membrane potential, resulting in a decreased supply of mitochondrial ATP to the Ca(2+)-ATPases of the intracellular stores and thus to a reduced Ca(2+) content of these stores. As a consequence, the increase in cytosolic Ca(2+) concentration evoked by a Ca(2+) mobilizing stimulus is decreased, leading to a reduction in mitochondrial Ca(2+) accumulation and ensuing ATP production and thus to a hampered energization of stimulus-induced cytosolic processes.  相似文献   

17.
《BBA》2023,1864(4):148999
Since the discovery of the respirasome constituted by complexes I, III2, and IV, its precise participation in mitochondrial bioenergetics is poorly understood. We previously determined a higher NADH:DBQ oxidoreductase activity coupled to a lower ROS production by the respirasome than the free complex I. Toxicological studies suggest that respiratory complexes are heavy metals target during mitochondrial intoxication increasing ROS production, reducing ATP synthesis and cell viability; however, the inhibition of respiratory complexes activities by heavy metals is still unknown. Here we showed a putative deactivation of the respirasomal-complex I by seven of the most toxicologically relevant heavy metals, without increasing the ROS production. Contrastingly, the free complex I was more resistant to heavy metals but was 30 times more ROS-producing. These results underlie the preventive role of the respirasome in mitochondrial electron leak and ROS production and recall its disassembled in some pathologies which involve mitochondrial damage and oxidative stress.  相似文献   

18.
The ‘rate of living’ theory predicts that longevity should be inversely correlated with the rate of mitochondrial respiration. However, recent studies in a number of model organisms, including mice, have reported that interventions that retard the aging process are, in fact, associated with an increase in mitochondrial activity. To better understand the relationship between energy metabolism and longevity, we supplemented the endogenous respiratory chain machinery of the fruit fly Drosophila melanogaster with the alternative single‐subunit NADH–ubiquinone oxidoreductase (Ndi1) of the baker’s yeast Saccharomyces cerevisiae. Here, we report that expression of Ndi1 in fly mitochondria leads to an increase in NADH–ubiquinone oxidoreductase activity, oxygen consumption, and ATP levels. In addition, exogenous Ndi1 expression results in increased CO2 production in living flies. Using an inducible gene‐expression system, we expressed Ndi1 in different cells and tissues and examined the impact on longevity. In doing so, we discovered that targeted expression of Ndi1 in fly neurons significantly increases lifespan without compromising fertility or physical activity. These findings are consistent with the idea that enhanced respiratory chain activity in neuronal tissue can prolong fly lifespan.  相似文献   

19.

Background

The rotenone-insensitive internal NADH-quinone oxidoreductase from yeast, Ndi1, has been shown to work as a replacement molecule for complex I in the respiratory chain of mammalian mitochondria. In the so-called transkingdom gene therapy, one major concern is the fact that the yeast protein is foreign in mammals. Long term expression of Ndi1 observed in rodents with no apparent damage to the target tissue was indicative of no action by the host''s immune system.

Methodology/Principal Findings

In the present study, we examined rat skeletal muscles expressing Ndi1 for possible signs of inflammatory or immune response. In parallel, we carried out delivery of the GFP gene using the same viral vector that was used for the NDI1 gene. The tissues were subjected to H&E staining and immunohistochemical analyses using antibodies specific for markers, CD11b, CD3, CD4, and CD8. The data showed no detectable signs of an immune response with the tissues expressing Ndi1. In contrast, mild but distinctive positive reactions were observed in the tissues expressing GFP. This clear difference most likely comes from the difference in the location of the expressed protein. Ndi1 was localized to the mitochondria whereas GFP was in the cytosol.

Conclusions/Significance

We demonstrated that Ndi1 expression did not trigger any inflammatory or immune response in rats. These results push forward the Ndi1-based molecular therapy and also expand the possibility of using foreign proteins that are directed to subcellular organelle such as mitochondria.  相似文献   

20.
Respiratory chain complex I (NADH:ubiquinone oxidoreductase) deficiency is one of the most frequent causes of mitochondrial disease in humans. The activity of this complex can be confidently measured in most tissue samples, but not in cultured skin fibroblasts or circulating lymphocytes. Highly contaminating non-mitochondrial NADH-quinone oxidoreductase activity in fibroblasts and the limited access of substrates to complex I in lymphocytes hinder its measurement in permeabilized cells. Complex I assay in these cells requires the isolation of mitochondria, which in turn necessitates large quantities of cells and is not feasible when studying circulating lymphocytes. Here we report a simple method to measure complex I activity in a minute amount of either cell type. The procedure strongly reduces contaminating NADH:quinone oxidoreductase activity and permits measuring high rates of rotenone-sensitive complex I activity thanks to effective cell permeabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号