首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genome rearrangements by nonlinear transposons in maize.   总被引:8,自引:0,他引:8  
J Zhang  T Peterson 《Genetics》1999,153(3):1403-1410
Transposable elements have long been considered as potential agents of large-scale genome reorganization by virtue of their ability to induce chromosomal rearrangements such as deletions, duplications, inversions, and reciprocal translocations. Previous researchers have shown that particular configurations of transposon termini can induce chromosome rearrangements at high frequencies. Here, we have analyzed chromosomal rearrangements derived from an unstable allele of the maize P1 (pericarp color) gene. The progenitor allele contains both a full-length Ac (Activator) transposable element and an Ac terminal fragment termed fAc (fractured Ac) inserted in the second intron of the P1-rr gene. Two rearranged alleles were derived from a classical maize ear twinned sector and were found to contain a large inverted duplication and a corresponding deficiency. The sequences at the junctions of the rearrangement breakpoints indicate that the duplication and deletion structures were produced by a single transposition event involving Ac and fAc termini located on sister chromatids. Because the transposition process we describe involves transposon ends located on different DNA molecules, it is termed nonlinear transposition (NLT). NLT can rapidly break and rejoin chromosomes and thus could have played an important role in generating structural heterogeneity during genome evolution.  相似文献   

2.
The maize Activator (Ac)/Dissociation (Ds) transposable element system has been used in a variety of plants for insertional mutagenesis. Ac/Ds elements can also generate genome rearrangements via alternative transposition reactions which involve the termini of closely linked transposons. Here, we introduced a transgene containing reverse-oriented Ac/Ds termini together with an Ac transposase gene into rice (Oryza sativa ssp. japonica cv. Nipponbare). Among the transgenic progeny, we identified and characterized 25 independent genome rearrangements at three different chromosomal loci. The rearrangements include chromosomal deletions and inversions and one translocation. Most of the deletions occurred within the T-DNA region, but two cases showed the loss of 72 kilobase pairs (kb) and 79 kb of rice genomic DNA flanking the transgene. In addition to deletions, we obtained chromosomal inversions ranging in size from less than 10 kb (within the transgene DNA) to over 1 million base pairs (Mb). For 11 inversions, we cloned and sequenced both inversion breakpoints; in all 11 cases, the inversion junctions contained the typical 8 base pairs (bp) Ac/Ds target site duplications, confirming their origin as transposition products. Together, our results indicate that alternative Ac/Ds transposition can be an efficient tool for functional genomics and chromosomal manipulation in rice.  相似文献   

3.
The maize Ac/Ds transposable element (TE) transposes by a "cut and paste" mechanism. Previous studies in maize showed that when the TE ends are in reversed orientation with respect to each other, alternative transposition reactions can occur resulting in large scale genome rearrangements including deletions and inversions. To test whether similar genome rearrangements can also occur in other plants, we studied the efficacy of such alternative transposition-mediated genome rearrangements in Arabidopsis. Here we present our analysis of 33 independent chromosome rearrangements. Transposition at the reversed ends Ds element can cause deletions over 1 Mbp, and inversions up to 2.4 Mbp in size. We identified additional rearrangements including a reciprocal translocation and a putative ring chromosome. Some of the deletions and inversions are germinally transmitted.  相似文献   

4.
Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5' and 3' termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.  相似文献   

5.
We studied the products of alternative transposition reactions that utilize reverse-oriented Ds termini as substrates. In this configuration, Ds transposition can generate genome rearrangements including deletions, inversions, and reciprocal translocations. In approximately half of the transposition products recovered in Arabidopsis, the termini of the reversed ends Ds element were ligated together. The sequences at these fused-end junctions suggest that the excised transposon termini form covalently closed hairpin structures. These results shed new light on the mechanism of Ac/Ds transposition.  相似文献   

6.
Zhang J  Peterson T 《Genetics》2004,167(4):1929-1937
In classical "cut-and-paste" transposition, transposons are excised from donor sites and inserted at new locations. We have identified an alternative pathway in which transposition involves the 5' end of an intact Ac element and the 3' end of a nearby terminally deleted fAc (fractured Ac). The Ac and fAc elements are inserted at the maize p1 locus on chromosome 1s in the same orientation; the adjacent ends of the separate elements are thus in reversed orientation with respect to each other and are separated by a distance of approximately 13 kb. Transposition involving the two ends in reversed orientation generates inversions, deletions, and a novel type of local rearrangement. The rearrangement breakpoints are bounded by the characteristic footprint or target site duplications typical of Ac transposition reactions. These results demonstrate a new intramolecular transposition mechanism by which transposons can greatly impact genome evolution.  相似文献   

7.
H. K. Dooner  A. Belachew 《Genetics》1991,129(3):855-862
Chromosome breaks and hence chromosomal rearrangements often occur in maize stocks harboring transposable elements (TEs), yet it is not clear what types of TE structures promote breakage. We have shown previously that chromosomes containing a complex transposon structure consisting of an Ac (Activator) element closely linked in direct orientation to a terminally deleted or fractured Ac (fAc) element have a strong tendency to break during endosperm development. Here we show that pairs of closely linked transposons with intact ends, either two Ac elements--a common product of Ac transposition--or an Ac and a Ds (Dissociation) element, can constitute chromosome-breaking structures, and that the frequency of breakage is inversely related to intertransposon distance. Similar structures may also be implicated in chromosome breaks in other eukaryotic TE systems known to produce chromosomal rearrangements. The present findings are discussed in light of a model of chromosome breakage that is based on the transposition of a partially replicated macrotransposon delimited by the outside ends of the two linked TEs.  相似文献   

8.
The maize Activator/Dissociation (Ac/Ds) elements are members of the hAT (hobo, Ac, and Tam3) superfamily of type II (DNA) transposons that transpose through a “cut-and-paste” mechanism. Previously, we reported that a pair of Ac ends in reversed orientation is capable of undergoing alternative transposition reactions that can generate large-scale chromosomal rearrangements, including deletions and inversions. We show here that rearrangements induced by reversed Ac ends transposition can join the coding and regulatory sequences of two linked paralogous genes to generate a series of chimeric genes, some of which are functional. To our knowledge, this is the first report demonstrating that alternative transposition reactions can recombine gene segments, leading to the creation of new genes.  相似文献   

9.
The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize.  相似文献   

10.
Huang JT  Dooner HK 《The Plant cell》2008,20(8):2019-2032
Several observations indicate that compatible ends of separate, yet closely linked, transposable elements (TEs) can interact in alternative transposition reactions. First, pairs of TEs cause chromosome breaks with frequencies inversely related to the intertransposon distance. Second, some combinations of two TEs produce complex rearrangements that often include DNA adjacent to one or both elements. In pairs of TEs in direct orientation, alternative reactions involving the external ends of the two TEs should lead to the transposition of a macrotransposon consisting of both elements plus the intervening chromosomal segment. Such macrotransposons have been hypothesized previously based on deletions, but no macrotransposon insertions have been recovered. To detect macrotransposition, we have analyzed heritable chromosomal rearrangements produced by a chromosome-breaking pair of Ac and Ds elements situated 6.5 kb apart in direct orientation in a part of the maize (Zea mays) genome dispensable for viability. Here, we show that the postulated macrotransposon can excise and reinsert elsewhere in the genome. In addition, this transposon pair produces other complex rearrangements, including deletions, inversions, and reshuffling of the intertransposon segment. Thus, closely linked TE pairs, a common transposition outcome in some superfamilies, are adept at restructuring chromosomes and may have been instrumental in reshaping plant genomes.  相似文献   

11.
Abortive gap repair: underlying mechanism for Ds element formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which the maize autonomous Ac transposable element gives rise to nonautonomous Ds elements is largely unknown. Sequence analysis of native maize Ds elements indicates a complex chimeric structure formed through deletions of Ac sequences with or without insertions of Ac-unrelated sequence blocks. These blocks are often flanked by short stretches of reshuffled and duplicated Ac sequences. To better understand the mechanism leading to Ds formation, we designed an assay for detecting alterations in Ac using transgenic tobacco plants carrying a single copy of Ac. We found frequent de novo alterations in Ac which were excision rather than sequence dependent, occurring within Ac but not within an almost identical Ds element and not within a stable transposase-producing gene. The de novo DNA rearrangements consisted of internal deletions with breakpoints usually occurring at short repeats and, in some cases, of duplication of Ac sequences or insertion of Ac-unrelated fragments. The ancient maize Ds elements and the young Ds elements in transgenic tobacco showed similar rearrangements, suggesting that Ac-Ds elements evolve rapidly, more so than stable genes, through deletions, duplications, and reshuffling of their own sequences and through capturing of unrelated sequences. The data presented here suggest that abortive Ac-induced gap repair, through the synthesis-dependent strand-annealing pathway, is the underlying mechanism for Ds element formation.  相似文献   

12.
Although it has been known for some time that the maize transposon Ac can mutate to Ds by undergoing internal deletions, the mechanism by which these mutations arise has remained conjectural. To gain further insight into this mechanism in maize we have studied a series of Ds elements that originated de novo from Ac elements at known locations in the genome. We present evidence that new, internally deleted Ds elements can arise at the Ac donor site when Ac transposes to another site in the genome. However, internal deletions are rare relative to Ac excision footprints, the predominant products of Ac transposition. We have characterized the deletion junctions in five new Ds elements. Short direct repeats of variable length occur adjacent to the deletion junction in three of the five Ds derivatives. In the remaining two, extra sequences or filler DNA is inserted at the junction. The filler DNAs are identical to sequences found close to the junction in the Ac DNA, where they are flanked by the same sequences that flank the filler DNA in the deletion. These findings are explained most simply by a mechanism involving error-prone DNA replication as an occasional alternative to end-joining in the repair of Ac-generated double-strand breaks.  相似文献   

13.
Zhang J  Peterson T 《Genetics》2005,171(1):333-344
Certain configurations of maize Ac/Ds transposon termini can undergo alternative transposition reactions leading to chromosome breakage and various types of stable chromosome rearrangements. Here, we show that a particular allele of the maize p1 gene containing an intact Ac element and a nearby terminally deleted Ac element (fAc) can undergo sister-chromatid transposition (SCT) reactions that generate large flanking deletions. Among 35 deletions characterized, all begin at the Ac termini in the p1 gene and extend to various flanking sites proximal to p1. The deletions range in size from the smallest of 12,567 bp to the largest of >4.6 cM; >80% of the deletions removed the p2 gene, a paralog of p1 located ~60 kb from p1 in the p1-vv allele and its derivatives. Sequencing of representative cases shows that the deletions have precise junctions between the transposon termini and the flanking genomic sequences. These results show that SCT events can efficiently generate interstitial deletions that are useful for in vivo dissection of local genome regions and for the rapid correlation of genetic and physical maps. Finally, we discuss evidence suggesting that deletions induced by alternative transposition reactions can occur at other genomic loci, indicating that this mechanism may have had a significant impact on genome evolution.  相似文献   

14.
15.
16.
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome.  相似文献   

17.
The transposable Dissociation (Ds) element of maize was first discovered as a site of high-frequency chromosome breakage. Because both Ds-mediated breakage and transposition require the presence of the Activator (Ac) element, it has been suggested that chromosome breakage may be the outcome of an aberrant transposition event. This idea is consistent with the finding that only complex structures containing multiple Ds or Ac and Ds elements have been correlated with chromosome breakage. In this report, we describe two chromosome-breaking maize alleles that contain pairs of closely linked but separate Ds elements inserted at the Waxy locus. A polymerase chain reaction assay was utilized to isolate intermediates in the breakage process. The DNA sequence of these intermediates reveals deletions and base pair changes consistent with transposon footprints that may represent the junctions between fused sister chromatids. These results provide direct molecular evidence that chromosome breakage is the result of aberrant transposition events.  相似文献   

18.
V. Gorbunova  A. A. Levy 《Genetics》1997,145(4):1161-1169
The maize Ac/Ds transposable elements are thought to transpose via a cut-and-paste mechanism, but the intermediates formed during transposition are still unknown. In this work we present evidence that circular Ac molecules are formed in plants containing actively transposing elements. In these circles, transposon ends are joined head-to-head. The sequence at the ends' junction is variable, containing small deletions or insertions. Circles containing deleted Ac ends are probably unable to successfully reintegrate. To test the ability of circles with intact transposon ends to integrate into the genome, an artificial Ds circle was constructed by cloning the joined ends of Ac into a plasmid carrying a plant selectable marker. When such a circular Ds was introduced into tobacco protoplasts in the presence of Ac-transposase, no efficient transposase-mediated integration was observed. Although a circular transposition intermediate cannot be ruled out, the findings of circles with deleted transposon ends and the absence of transposase-mediated integration of the circular Ds suggest that some of the joined-ends-carrying elements are not transposition intermediates, but rather abortive excision products. The formation of Ac circles might account for the previously described phenomenon of Ac-loss. The origin of Ac circles and the implications for models of Ac transposition are discussed.  相似文献   

19.
Conrad LJ  Brutnell TP 《Genetics》2005,171(4):1999-2012
We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.  相似文献   

20.
In maize, the P1-vv allele specifies variegated pericarp and cob pigmentation, and contains an Ac transposable element inserted in the second intron of the P1-rr gene. Starting from P1-vv, we recovered a new allele, called P1-vv5145, which gives an extremely light variegated pericarp and cob phenotype. The P1-vv5145 allele contains an Ac element ( Ac5145) at the same position and in the same orientation as in the progenitor P1-vv allele; however, the P1-vv5145 allele has a 2-bp deletion which removes the last nucleotide (A) from the 3' end of the Ac element, and an adjacent flanking nucleotide (C) from the p1 intron. In crosses with a Ds tester stock, P1-vv5145 shows a normal ability to induce Ds transposition; however, Ac excision from P1-vv5145 is 3800-fold less frequent than from the progenitor P1-vv allele. Our results demonstrate that the alteration of the 3' terminal base strongly impairs Ac transposition. The P1-vv5145 allele thus provides a relatively stable source of Ac transposase for controlling Ds transposition in genetic experiments. In addition, we describe two further alleles ( P1-ww7B8, P1-ww9A146-3) that contain deletions of Ac and flanking p1 gene sequences. These latter deletions are larger and involve the 5' end of the the Ac element. A model is proposed to explain the formation of one-sided deletions as a consequence of Ac transposition during replication of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号