首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.  相似文献   

2.
Chimeric virus-like particles (VLPs) of infectious bursal disease virus (IBDV) were produced by coinfecting Spodoptera frugiperda (Sf-9) insect cells with two recombinant baculoviruses, vIBD-7 and vEDLH-22. vIBD-7 encodes VP2, VP3, and VP4 of the IBDV structural proteins. vEDLH-22 encodes VP2 with five histidine residues at the carboxy-terminus (VP2H). Coinfection produced hybrid VLPs composed of VP2, VP2H, and VP3. The additional histidine residues on VP2H enabled the efficient purification of VLPs based on immobilized metal affinity chromatography (IMAC). These results demonstrated that the VLPs formed are comprised of chimeric subunits with attached affinity ligands, and further, that sufficient His5 ligand was available for binding to the IMAC metal-chelating resin. Additionally, these novel particles were fully characterized for antigenicity by a series of monoclonal antibodies, and appeared identical to the two wild-type IBDV strains contributing subunits to the chimeric VLP. IMAC purification provides a promising low-cost and simple scheme to purify VLPs as vaccines.  相似文献   

3.
Virus-like particles (VLPs) have been employed for a number of nanometric applications because they self-assemble, exhibit a high degree of symmetry, and can be genetically and chemically modified. However, high symmetry does not allow for a single unique modification site on the VLP. Here, we demonstrate the co-expression of the cytotoxic A2 protein and the coat protein of the bacteriophage Qβ to form a nearly monodispersed population of novel VLPs. Cell-free protein synthesis allows for direct access and optimization of protein-synthesis and VLP-assembly. The A2 is shown to be incorporated at high efficiency, approaching a theoretical maximum of one A2 per VLP. This work demonstrates de novo production of a novel VLP, which contains a unique site that has the potential for future nanometric engineering applications.  相似文献   

4.
Herein, we present the efficient cellular uptake of immobilized virus-like particles (VLPs) made of recombinant JC virus capsid proteins. VLPs expressed in Escherichia coli were labeled with fluorescein isothiocyanate (FITC). We compared two approaches for the cellular uptake of the FITC-VLPs. In the first approach, FITC-VLPs were immobilized on a polystyrene substrate, and then NIH3T3 cells were cultured on the same substrate. In the second approach, cells were cultured on a polystyrene substrate, and FITC-VLPs were then added to the cell culture medium. Flow cytometric analysis and confocal laser microscopic observation revealed that immobilized VLPs were incorporated into the cells with higher efficiency than were the diffusive VLPs suspended in solution. The cellular uptake of VLPs on the substrate was increased in a VLP density-dependent manner. As a control, disassembling VLPs to form VP1 pentamers abolished incorporation into the cells. Displaying sialic acid on the substrate enhanced VLP density through the specific affinities between the VLPs and sialic acid, resulting in efficient incorporation into the seeded cells. These techniques can be applied to the development of novel drug delivery systems and cell microarrays not only of nucleic acids but also of small molecules and proteins through their encapsulation in VLPs.  相似文献   

5.
The development of various types of virus‐like particles (VLPs) has accelerated over the past two decades as the importance of VLPs for generating next‐generation vaccines has been appreciated. Yeast has advantages such as scalable fermentation, low risk of contamination by adventitious agents, low production costs and the ability to produce VLPs with reliable qualities. It is generally recognized that yeast is suitable for producing VLPs that have simple structures and are produced intracellularly. However, recently there has been much effort to extend its applicability, and there is now evidence that it can be used as an expression platform for the productions of VLPs not only of nonenveloped viruses but also of enveloped viruses. Moreover, evidences indicated that yeast allows secretory VLP productions. Meanwhile, it has become evident that the quality and quantity of yeast‐derived VLPs are influenced by the choice of plasmid and promoter, the ratio of the structural proteins produced. Here, we review the characteristics of the yeast expression system in terms of the production of VLP and compare it with other expression systems. We also consider strategies for VLP production in yeast and factors that need to be taken into account.  相似文献   

6.
Virus-like particles: passport to immune recognition   总被引:9,自引:0,他引:9  
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. In many cases such VLPs have structural characteristics and antigenicity similar to the parental virus, and some have already proven successful as vaccines against the cognate virus infection. The structural components of some VLPs have also proven amenable to the insertion or fusion of foreign antigenic sequences, allowing the production of chimeric VLPs exposing the foreign antigen on their surface. Other VLPs have been used as carriers for foreign antigens, including non-protein antigens, via chemical conjugation. This review outlines some of the advantages, disadvantages, and technical considerations for the use of a wide range of VLP systems in vaccine development.  相似文献   

7.
The single-coat protein (CP) of bacteriophage Qβ self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.  相似文献   

8.
Peptide nucleic acids and their structural modifications   总被引:3,自引:0,他引:3  
Peptide (polyamide) analogues of nucleic acids (PNAs) make very promising groups of natural nucleic acid (NA) ligands and show many other interesting properties. Two types of these analogues may be highlighted as particularly interesting: the first, containing a polyamide with alternating peptide/pseudopeptide bonds as its backbone, consisting of N-(aminoalkyl)amino-acid units (type I), with nucleobases attached to the backbone nitrogen with the carboxyalkyl linker; and the second, containing a backbone consisting of amino-acid residues carrying the nucleobases in their side chains (type II). So far, these two groups have been studied most intensively. The paper describes main groups of peptide nucleic acids, as well as various other amino acid-derived nucleobase monomers or their oligomers, which were either studied in order to determine their hybridisation to nucleic acids, or only discussed with respect to their potential usefulness in the oligomerisation and nucleic acids binding.  相似文献   

9.
The rapid worldwide spread of human immunodeficiency virus (HIV) mandates the development of successful vaccination strategies. Since live attenuated HIV is not accepted as a vaccine due to safety concerns, virus-like particles (VLPs) offer an attractive safe alternative because they lack the viral genome yet they are perceived by the immune system as a virus particle. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this we generated chimeric simian immunodeficiency virus (SIV) VLPs containing either glycosylphosphatidylinositol (GPI)-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity and ability to enhance immune responses in vivo. Immunization of mice with chimeric SIV VLPs containing GM-CSF induced SIV Env-specific antibodies as well as neutralizing activity at significantly higher levels than those induced by standard SIV VLPs, SIV VLPs containing CD40L, or standard VLPs mixed with soluble GM-CSF. In addition, mice immunized with chimeric SIV VLPs containing either GM-CSF or CD40L showed significantly increased CD4(+)- and CD8(+)-T-cell responses to SIV Env, compared to standard SIV VLPs. Taken together, these results demonstrate that the incorporation of immunostimulatory molecules enhances humoral and cellular immune responses. We propose that anchoring immunostimulatory molecules into SIV VLPs can be a promising approach to augmenting the efficacy of VLP antigens.  相似文献   

10.
The high level of immunogenicity of peptides displayed in dense repetitive arrays on virus-like particles makes recombinant VLPs promising vaccine carriers. Here, we describe a platform for vaccine development based on the VLPs of RNA bacteriophage MS2. It serves for the engineered display of specific peptide sequences, but will also allow the construction of random peptide libraries from which specific binding activities can be recovered by affinity selection. Peptides representing the V3 loop of HIV gp120 and the ECL2 loop of the HIV coreceptor, CCR5, were inserted into a surface loop of MS2 coat protein. Both insertions disrupted coat VLP assembly, apparently by interfering with protein folding, but these defects were suppressed efficiently by genetically fusing coat protein's two identical polypeptides into a single-chain dimer. The resulting VLPs displayed the V3 and ECL2 peptides on their surfaces where they showed the potent immunogenicity that is the hallmark of VLP-displayed antigens. Experiments with random-sequence peptide libraries show the single-chain dimer to be highly tolerant of six, eight and ten amino acid insertions. MS2 VLPs support the display of a wide diversity of peptides in a highly immunogenic format, and they encapsidate the mRNAs that direct their synthesis, thus establishing the genotype/phenotype linkage necessary for recovery of affinity-selected sequences. The single-chain MS2 VLP therefore unites in a single structural platform the selective power of phage display with the high immunogenicity of VLPs.  相似文献   

11.

Background

Virus-like Particles (VLPs) display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV) that provides broad protection from diverse HPV types in a mouse pseudovirus infection model.

Methodology/Principal Findings

Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types.

Conclusion/Significance

We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.  相似文献   

12.
13.
There is increasing demand for virus-like particles (VLPs) as a platform for prophylactic vaccine production. However, little attention has been paid to how downstream processing affects the structure and immunogenicity of the VLPs. In this study, we compared three methods of purifying human papillomavirus type 16 (HPV16) VLPs, each including the same cation-exchange chromatography (CEC) step. Method T-1 uses both ammonium sulfate precipitation (ASP) and a step to remove precipitated contaminating proteins (SRPC) prior to CEC, while T-2 uses only the SRPC step prior to CEC and T-3 includes neither step. We compared the structural integrity and immunogenicity of the HPV16 VLPs resulting from these three methods. All three preparations were highly pure. However, the final yields of the VLPs obtained with T-2 were 1.5 and 2 fold higher than with T-1 and T-3, respectively. With respect to structural integrity, T-1 and T-2 HPV16 VLPs had smaller hydrodynamic diameters and higher reactivity towards monoclonal anti-HPV16 neutralizing antibodies than T-3 VLPs, indicating higher potentials of T-1 and T-2 VLPs for eliciting anti-HPV16 neutralizing antibodies. Moreover, it was confirmed that the T-1 and T-2 HPV16 VLPs elicit anti-HPV16 neutralizing antibodies more efficiently than T-3 HPV16 VLPs do in mice immunizations: the abilities for eliciting neutralizing antibodies were in the order T-2 VLP > T-1 VLP > T-3 VLP. We conclude that the process design for purifying HPV VLPs is a critical determinant of the quality of the final product.  相似文献   

14.
Noroviruses are the principal cause of epidemic gastroenteritis worldwide with GII.4 strains accounting for 80% of infections. The major capsid protein of GII.4 strains is evolving rapidly, resulting in new epidemic strains with altered antigenic potentials. To test if antigenic drift may contribute to GII.4 persistence, human memory B cells were immortalized and the resulting human monoclonal antibodies (mAbs) characterized for reactivity to a panel of time-ordered GII.4 virus-like particles (VLPs). Reflecting the complex exposure history of the volunteer, human anti-GII.4 mAbs grouped into three VLP reactivity patterns; ancestral (1987–1997), contemporary (2004–2009), and broad (1987–2009). NVB 114 reacted exclusively to the earliest GII.4 VLPs by EIA and blockade. NVB 97 specifically bound and blocked only contemporary GII.4 VLPs, while NBV 111 and 43.9 exclusively reacted with and blocked variants of the GII.4.2006 Minerva strain. Three mAbs had broad GII.4 reactivity. Two, NVB 37.10 and 61.3, also detected other genogroup II VLPs by EIA but did not block any VLP interactions with carbohydrate ligands. NVB 71.4 cross-neutralized the panel of time-ordered GII.4 VLPs, as measured by VLP-carbohydrate blockade assays. Using mutant VLPs designed to alter predicted antigenic epitopes, two evolving, GII.4-specific, blockade epitopes were mapped. Amino acids 294–298 and 368–372 were required for binding NVB 114, 111 and 43.9 mAbs. Amino acids 393–395 were essential for binding NVB 97, supporting earlier correlations between antibody blockade escape and carbohydrate binding variation. These data inform VLP vaccine design, provide a strategy for expanding the cross-blockade potential of chimeric VLP vaccines, and identify an antibody with broadly neutralizing therapeutic potential for the treatment of human disease. Moreover, these data support the hypothesis that GII.4 norovirus evolution is heavily influenced by antigenic variation of neutralizing epitopes and consequently, antibody-driven receptor switching; thus, protective herd immunity is a driving force in norovirus molecular evolution.  相似文献   

15.
Most of the drugs used in chemotherapy should be activated by a transformation catalyzed by cytochrome P450 (CYP) enzymes. In this work, bacteriophage P22 virus‐like particles (VLPs) containing CYP activity, immunologically inert and functionalized in order to be recognized by human cervix carcinoma cells and human breast adenocarcinoma cells were designed. The CYP was encapsulated inside the virus capsid obtained from the bacteriophage P22. CYP and coat protein were both heterologously expressed in E. coli. The VLPs with enzymatic activity were covered with polyethylene glycol that was functionalized in its distal end with folic acid in order to be recognized by folate receptors exhibited on tumor cells. The capacity of biocatalytic VLPs to be recognized and internalized into tumor cells is demonstrated. The VLP‐treated cells showed enhanced capacity for the transformation of the pro‐drug tamoxifen, which resulted in an increase of the cell sensitivity to this oncological drug. In this work, the potential use of biocatalytic VLPs vehicles as a delivery system of medical relevant enzymes is clearly demonstrated. In addition to cancer treatment, this technology also offers an interesting platform as nano‐bioreactors for intracellular delivery of enzymatic activity for other diseases originated by the lack of enzymatic activity.  相似文献   

16.
Despite the recent introduction of a commercial vaccine, the mosquito-transmitted dengue virus is still a worldwide public health problem. Based on the live attenuated vaccine strategy, the commercial vaccine has a less than optimal protective profile. Virus-like particles (VLPs) offer an attractive alternate vaccination strategy due to the effectively native presentation of epitopes in the absence of any infectious genetic material. However, the production of amounts of VLP in a platform that can support commercial development remains a major obstacle. This study generated two DENV 2 VLPs [codon-optimized and chimeric DENV/Japanese encephalitis virus (JEV)] and directly compared yields of these constructs by western blotting and dot blot hybridization. The effect of oleic acid supplementation, a process known to increase DENV production in natural infection, was also investigated. Results showed that the chimeric construct gave a two- to threefold higher yield than the codon-optimized construct and that while oleic acid increased DENV virion production in natural infection, it inhibited VLP production. These results suggest that further optimization of DENV VLP expression is possible, but it will require more understanding of how native DENV infection remodels the host cell machinery.  相似文献   

17.
A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae) dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs) as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+) memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i) a heterologous model protein (GFP), (ii) a per se toxic protein (K28 alpha-subunit), and (iii) a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A). Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.  相似文献   

18.
The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.  相似文献   

19.
Virus-like particles (VLPs) are empty particles consisting of virus capsid proteins that closely resemble native virus but are devoid of the native viral nucleic acids and therefore have attracted significant attention as noninfectious vaccines. A recombinant baculovirus, vIBD-7, which encodes the structural proteins (VP2, VP3, and VP4) of infectious bursal disease virus (IBDV), produces native IBD VLPs in infected Spodoptera frugiperda insect cells. Another baculovirus, vEDLH-22, encodes VP2 that is fused with a histidine affinity-tag (VP2H) at the C-terminus. By co-infection with these two baculoviruses, hybrid VLPs with histidine tags were formed and purified by immobilized metal affinity chromatography (Hu et al., 1999). Also, we demonstrated that varying the MOI ratio of these infecting viruses altered the extent of VP2H incorporated into the particles. A dynamic mathematical model that described baculovirus infection and VLP synthesis (Hu and Bentley, 2000) was adapted here for co-infection and validated by immunofluorescence labeling. It was shown to predict the VLP composition as a dynamic function of MOI. A constraint in the VP2H content incorporated into the particles was predicted and shown by experiments. Also, the MOI ratio of both infecting viruses was shown to be the major factor influencing the composition of the hybrid particles and an important factor in determining the overall yield. ELISA results confirmed that VP2H was exhibited to a varied extent on the outer surface of the particles. This model provides insight on the use of virus co-infection in virus-mediated recombinant protein expression systems and aids in the optimization of chimeric VLP synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号