首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic cleavage of protein kinase C (PKC) under cell-free conditions generates a co-factor independent, free catalytic subunit (PKM). However, the difficulty in visualizing PKM in intact cells has generated controversy regarding its physiological relevance. In the present study, treatment of SH-SY-5Y cells with 2-O-tetradecanoylphorbol 13-acetate resulted in complete down-regulation of PKC within 24 h without detection of PKM. By contrast, low levels of PKM were transiently detected following ionophore-mediated calcium influx under conditions which induced no detectable PKC loss. PKM was not detected during rapid cell-free degradation of partially purified SH-SY-5Y PKCα by purified human brain mM calpain. However, when the kinetics of PKC degradation were slowed by lowering levels of calpain, PKM was transiently detected. PKM was also only transiently observed following calpain-mediated degradation of purified rat brain PKCα. Densitometric analyses indicated that, once formed, PKM was degraded approximately 10 times faster than PKC. These data provide an explanation as to why PKM is difficult to observe in situ, and indicate that PKM should not be considered as an ‘unregulated’ kinase, since its persistence is apparently strictly regulated by proteolysis.  相似文献   

2.
Abstract: We examined the interdependence of calpain and protein kinase C (PKC) activities on neurite outgrowth in SH-SY-5Y human neuroblastoma cells. SH-SY-5Y cells elaborated neurites when deprived of serum or after a specific thrombin inhibitor, hirudin, was added to serum-containing medium. The extent of neurite outgrowth under these conditions was enhanced by treatment of cells with the cell-permeant cysteine protease inhibitors N-acetyl-leucyl-leucyl-norleucinal (“C1”) and calpeptin or by the phospholipid-mediated intracellular delivery of either a recombinant peptide corresponding to a conserved inhibitory sequence of human calpastatin or a neutralizing anti-calpain antisera. Calpain inhibition in intact cells was confirmed by immunoblot analysis showing inhibition of calpain autolysis and reduced proteolysis of the known calpain substrates fodrin and microtubule-associated protein 1. The above inhibitory peptides and antiserum did not induce neurites in medium containing serum but lacking hirudin, suggesting that increased surface protein adhesiveness is a prerequisite for enhancement of neurite outgrowth by calpain inhibition. Treatment of cells with the PKC inhibitor H7, staurosporine, or sphingosine induced neurite outgrowth independently of serum concentration. Because calpain is thought to regulate PKC activity, we examined this potential interrelationship during neurite outgrowth. Simultaneous treatment with calpain and PKC inhibitors did not produce additive or synergistic effects on neurite outgrowth. PKC activation by 2-O-tetradecanoylphorbol 13-acetate (TPA) prevented and reversed both neurite initiation by serum deprivation and its enhancement by calpain inhibitors. Treatment of cells with the calpain inhibitor C1 retarded PKC down-regulation following TPA treatment. Cell-free analyses demonstrated the relative specificity of various protease and kinase inhibitors for calpain and PKC and confirmed the ability of millimolar calcium-requiring calpain to cleave the SH-SY-5Y PKC regulatory subunit from the catalytic subunit, yielding a free catalytic subunit (protein kinase M). These findings suggest that the influence of PKC on neurite outgrowth is downstream from that of surface adhesiveness and calpain activity.  相似文献   

3.
We have purified a yeast protein kinase that is phospholipid-dependent and activated by Diacylglycerol (DAG) in the presence of Ca2+ or by the tumour-promoting agent tetradecanoyl-phorbol acetate (TPA). The properties of this enzyme are similar to those of the mammalian protein kinase C (PKC). The enzyme was purified using chromatography on DEAE-cellulose followed by hydroxylapatite. The latter chromatography separated the activity to three distinguishable sub-species, analogous to the mammalian PKC isoenzymes. The fractions enriched in PKC activity contain proteins that specifically bind TPA, are specifically phosphorylated in the presence of DAG and recognized by anti-mammalian PKC antibodies.  相似文献   

4.
Two major protein kinase C (PKC) isozymes, accounting for approximately 95% of the total activity in human neutrophils, were separated by hydroxyapatite chromatography and were identified as beta-PKC (60% of the total) and alpha-PKC (35% of the total). No gamma-PKC was detected. A minor Ca2+/phospholipid requiring kinase that eluted from hydroxyapatite after alpha-PKC did not react significantly with any of the specific antisera employed for identification. Modification of beta-PKC or the minor PKC isozyme by calpain yielded Ca2+/phospholipid-independent forms (PKM) that retained only 50% of the original activities. In contrast, PKM formed from alpha-PKC retained full catalytic activity. For each native isozyme the rate of conversion by calpain was accelerated in the presence of Ca2+ and the lipid effectors, and the PKM form generated in each case was resistant to further digestion by calpain. All three PKC isozymes were also modified by a neutral serine proteinase isolated from human neutrophils, with this proteinase the major effect being loss of kinase activity, via a transient production of a Ca2+/phospholipid-independent form. This neutral serine proteinase appears to be localized at sites of interaction of cytoskeletal proteins with the cell membrane. Following stimulation of intact neutrophils with phorbol 12-myristate 13-acetate complete loss of native cytosolic kinase activity was observed, with recovery of approximately 30% of the original activity as a cytosolic Ca+/phospholipid independent form, presumably PKM. Loss of native PKC activity was greatest for the beta-isozyme. In cells stimulated by fMet-Leu-Phe approximately 60% of the original PKC activity was recovered as native cytosolic PKC and 30% as cytosolic PKM. Inhibitors of calpain reduced the extent of down-regulation of PKC, increased the proportion of PKC that remained associated with the plasma membrane and significantly reduced the proteolytically generated fully active PKM. Taken together, the in vitro and in vivo results suggest that calpain is involved primarily in the conversion of the PKC isozymes to the irreversibly activated PKM forms, and that the neutral serine proteinase may be the enzyme responsible for down-regulation, possibly via PKM as an intermediate.  相似文献   

5.
Arachidonic acid (AA) stimulation of adhesion of human metastatic breast carcinoma cells to collagen type IV depends on the protein kinase C (PKC) pathway(s) and is associated with the translocation of PKC mu from the cytoplasm to the membrane. In the present study, we have further explored the role of PKC mu in AA-stimulated adhesion. PKC mu activation site serines 738/742 and autophosphorylation site serine 910 are rapidly phosphorylated, and in vitro PKC mu kinase activity is enhanced in response to AA treatment. Inhibition of PKC mu activation blocks AA-stimulated adhesion. A phosphorylated, truncated species of PKC mu was detected in AA-treated cells. This 77-kDa protein contains the kinase domain but lacks a significant portion of the regulatory domains. Inhibition of calpain protease activity blocks generation of the truncated protein, promotes accumulation of the activated, full-length protein in the membrane, and blocks the AA-mediated increase in adhesion. p38 MAPK activity is also required for AA-stimulated adhesion. Activation of PKC mu and p38 are independent events. However, inhibition of p38 activity reduces calpain-mediated proteolysis of PKC mu and in vivo calpain activity, suggesting a role for p38 in regulation of calpain activity and a point for cross-talk between the PKC and MAPK pathways. These results support the hypothesis that AA stimulates activation of PKC mu, which is cleaved by calpain at the cell membrane. The resulting truncated kinase, as well as the full-length kinase, may be required for increased cell adhesion to collagen type IV. Additionally, these studies present the first evidence for calpain cleavage of a non-structural protein leading to the promotion of tumor cell adhesion.  相似文献   

6.
Limited proteolysis of protein kinase C (PKC) subspecies with Ca2(+)-dependent neutral protease II (calpain II) was remarkably stimulated by basic polypeptides, such as H1 histone and poly-L-lysine. This stimulatory effect was observed for proteolysis of the active form of PKC, which was associated with phospholipid and diacylglycerol. The inactive form of PKC was far less susceptible to proteolysis, both in the presence and absence of the basic polypeptides. The basic polypeptides did not appear to interact with calpain II, but made the PKC molecule more susceptible to proteolysis. The relative rates of cleavage of type I (gamma), II (beta), and III (alpha) PKC were 2:2:1. The available evidence suggests that, like calpain I, calpain II may also contribute to the down-regulation or depletion of PKC.  相似文献   

7.
Phosphorylation of Rab proteins from the brain of Bombyx mori   总被引:1,自引:0,他引:1  
Rab proteins play fundamental roles in the regulation of membrane traffic. Previously, from the brain of Bombyx mori we isolated two cDNA clones (BRab1 and BRab14), each of which encoded a different member of Rab-protein family and was expressed in Escherichia coli and purified using an affinity chromatography. In this study, one cDNA clone (BRab8) was isolated from a cDNA library from the brain of B. mori. The recombinant protein was expressed in E. coli and purified. Next, the phosphorylations of these three purified BRab proteins were examined, using mammalian protein kinases in vitro. Protein kinase C (PKC) phosphorylated BRab8 and BRab14 proteins. Protein kinase A faintly phosphorylated BRab8 and BRab14 proteins. Calcium/calmodulin-dependent protein kinase faintly phosphorylated BRab8 protein. Next, brains of B. mori were dissected and homogenized. The homogenate showed a calcium-dependent protein kinase activity of BRab8 and BRab14 proteins. So PKC from the brain of B. mori was partially purified by a sequence of chromatographies on DEAE-Cellulofine and affinity chromatography. This PKC phosphorylated BRab8 and BRab14 proteins. These results suggest that the function of Rab proteins in the brain of B. mori is regulated by calcium-dependent protein kinases.  相似文献   

8.
Abstract: Calcium influx into SH-SY5Y human neuroblastoma cells after ionophore treatment or transient permeabilization in calcium-containing medium increased ALZ-50 immunoreactivity markedly. This increase was prevented by inhibitors active against calpain or against protein kinase C (PKC), suggesting that both of these enzymes were required to mediate the effect of calcium influx on ALZ-50 immunoreactivity. Treatment with PKC activator TPA increased ALZ-50 immunoreactivity in the absence of calcium influx or after intracellular delivery of the specific calpain inhibitor calpastatin, indicating that the influence of PKC was downstream from that of calpain. Calcium influx also resulted in μ-calpain autolysis (one index of calpain activation) and the transient appearance of PKM (i.e., free PKC catalytic subunits, generated by calpain-mediated cleavage of the regulatory and catalytic PKC domains). Inhibition of calpain within intact cells resulted in a dramatic increase in steady-state levels of total τ (migrating at 46–52 kDa) but resulted in a relatively minor increase in 68-kDa ALZ-50-immunoreactive τ isoforms. Although calcium influx into intact cells resulted in accumulation of ALZ-50 immunoreactivity, total τ levels were, by contrast, rapidly depleted. Incubation of isolated fractions with calpain in the presence of calcium indicated that ALZ-50-immunoreactive τ isoforms were more resistant to calpain-mediated proteolysis than were non-ALZ-50 reactive τ isoforms. These data therefore indicate that calpain may regulate τ levels directly via proteolysis and indirectly through PKC activation. A consequence of the latter action is altered τ phosphorylation, perhaps involving one or more kinase cascades, and the preferential accumulation of ALZ-50-immunoreactive τ isoforms due to their relative resistance to degradation. These findings provide a basis for the possibility that disregulation of calcium homeostasis may contribute to the pathological levels of conversion of τ to A68 by hyperactivation of the calpain/PKC system.  相似文献   

9.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

10.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

11.
Enhanced activity of the dopaminergic system originating in the ventral tegmental area is implicated in addictive and psychiatric disorders. Burst firing increases dopamine levels at the synapse to signal novelty and salience. We have previously reported a calcium-dependent burst firing of dopamine cells mediated by L-type channels following cholinergic stimulation; this paper describes a cellular mechanism resulting in burst firing following L-type channel activation. Calcium influx through L-type channels following FPL 64176 or (S)-(-)-Bay K8644 induced burst firing independent of dopamine, glutamate, or calcium from the internal stores. Burst firing induced as such was completely blocked by the substrate site protein kinase C (PKC) inhibitor chelerythrine but not by the diacylglycerol site inhibitor calphostin C. Western blotting analysis showed that FPL 64176 and (S)-(-)-Bay K8644 increased the cleavage of PKC to generate protein kinase M (PKM) and the specific calpain inhibitor MDL28170 blocked this increase. Prevention of PKM production by inhibiting calpain or depleting PKC blocked burst firing induction whereas direct loading of purified PKM into cells induced burst firing. Activation of the N-methyl-D-aspartic acid type glutamate or cholinergic receptors known to induce burst firing increased PKM expression. These results indicate that calcium influx through L-type channels activates a calcium-dependent protease that cleaves PKC to generate constitutively active and labile PKM resulting in burst firing of dopamine cells, a pathway that is involved in glutamatergic or cholinergic modulation of the central dopamine system.  相似文献   

12.
Partially reduced oxygen species are toxic, yet activated sea urchin eggs produce H2O2, suggesting that the control of oxidant stress might be critical for early embryonic development. We show that the Ca2(+)-stimulated NADPH oxidase that generates H2O2 in the "respiratory burst" of fertilization is activated by a protein kinase, apparently to regulate the synthesis of this potentially lethal oxidant. The NADPH oxidase was separated into membrane and soluble fractions that were both required for H2O2 synthesis. The soluble fraction was further purified by anion exchange chromatography. The factor in the soluble fraction that activated the membrane-associated oxidase was demonstrated to be protein kinase C (PKC) by several criteria, including its Ca2+/phophatidylserine/diacyl-glycerol-stimulated histone kinase activity, its response to phorbol ester, its inhibition by a PKC pseudosubstrate peptide, and its replacement by purified mammalian PKC. Neither calmodulin-dependent kinase II, the catalytic subunit of cyclic AMP-dependent protein kinase, casein kinase II, nor myosin light chain kinase activated the oxidase. Although the PKC family has been ubiquitously implicated in cellular regulation, enzymes that require PKC for activation have not been identified; the respiratory burst oxidase is one such enzyme.  相似文献   

13.
Histamine stimulus triggers inhibition of myosin phosphatase-enhanced phosphorylation of myosin and contraction of vascular smooth muscle. In response to histamine stimulation of intact femoral artery, a smooth muscle-specific protein called CPI-17 (for protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kDa) is phosphorylated and converted to a potent inhibitor for myosin phosphatase. Phosphorylation of CPI-17 is diminished by pretreatment with either or GF109203x, suggesting involvement of multiple kinases (Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L. (2000) J. Biol. Chem. 275, 9897--9900). Here we purified and identified CPI-17 kinases endogenous to pig artery that phosphorylate CPI-17. DEAE-Toyopearl column chromatography of aorta extracts separated two CPI-17 kinases. One kinase was protein kinase C (PKC) alpha, and the second kinase was purified to homogeneity as a 45-kDa protein, and identified by sequencing as PKC delta. Purified PKC delta was 3-fold more reactive with CPI-17 compared with myelin basic protein, whereas purified PKC alpha and recombinant RhoA-activated kinases (Rho-associated coiled-coil forming protein Ser/Thr kinase and protein kinase N) showed equal activity with CPI-17 and myelin basic protein. inhibited CPI-17 phosphorylation by purified PKC delta with IC(50) of 0.6 microm (in the presence of 0.1 mm ATP) or 14 microm (2.0 mm ATP). significantly suppressed CPI-17 phosphorylation in smooth muscle cells, and the contraction of permeabilized rabbit femoral artery induced by stimulation with phorbol ester. GF109203x inhibited phorbol ester-induced contraction of rabbit femoral artery by 80%, whereas a PKC alpha/beta inhibitor, Go6976, reduced contraction by 47%. The results imply that histamine stimulation elicits contraction of vascular smooth muscle through activation of PKC alpha and especially PKC delta to phosphorylate CPI-17.  相似文献   

14.
We have previously shown that calpain promotes myoblast fusion by acting on protein kinase C-alpha and the cytosolic phosphorylated form of MARCKS. In other cell types, various isoforms of calpain, PKC alpha and MARCKS were found associated with caveolae. These vesicular invaginations of the plasma membrane are essential for myoblast fusion and differentiation. We have isolated caveolae from myoblasts and studied the presence of calpain isoforms and their possible effects on signalling mediated by caveolae-associated PKC. Our results show that milli-calpain co-localizes with myoblast caveolae. Futhermore we provide evidence, using a calcium ionophore and a specific inhibitor of calpains (calpastatin peptide), that milli-calpain reduces the PKC alpha and MARCKS content in these structures. Purified milli-calpain causes the appearance of the active catalytic fragment of PKC alpha (PKM), without having an effect on MARCKS. Addition of phorbol myristate acetate, an activator of PKC, induces tranlocation of PKC alpha towards caveolae and results in a significant reduction of MARCKS associated with caveolae. This phenomenon is not observed when a PKC alpha inhibitor is added at the same time. We conclude that the presence of biologically active milli-calpain within myoblast caveolae induces, in a PKC alpha-dependent manner, MARCKS translocation towards the cytosol. Such a localised signalling event may be essential for myoblast fusion and differentiation.  相似文献   

15.
Protein kinase C (PKC) was partially purified from Xenopus laevis oocytes by ammonium sulfate fractionation followed by DEAE-cellulose and hydroxyapatite column chromatography. In the latter chromatography, two distinct PKC activities were identified. Both PKC fractions contained an 80 kDa protein which was recognized by three antisera raised against the conserved regions of mammalian PKC. However, specific antisera against alpha, beta I, beta II, and gamma-subspecies of rat PKC did not recognize the protein. Kinetic properties of the Xenopus PKCs were very similar to those of the rat alpha PKC, and only a subtle difference was found in the mode of activation by arachidonic acid. When oocytes were treated with the tumor promoter, phorbol 12-myristate 13-acetate, one of the Xenopus PKCs was found to disappear very rapidly, while the other remained unchanged up to 2 hr.  相似文献   

16.
Bovine seminal plasma contains a group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), and they are secreted by the seminal vesicles. In our study, we purified the BSP-A1/-A2 through affinity chromatography and found for the first time that BSP-A1/-A2 can inhibit the activity of protein kinase C (PKC) and tyrosine protein kinase (TPK). The inhibition was dose dependent. When the PKC and TPK activities are expressed as the logarithm of percentage activity taking the activity in the absence of the BSP-A1/-A2 as 100%, there is a linear relationship between the their activities and the dose of BSP-A1/-A2.  相似文献   

17.
A calpain (Ca(2+)-activated neutral protease) activator was purified from human platelets by ammonium sulfate fractionation, gel-filtration, ion-exchange chromatography, followed by heat-treatment. The purified calpain activator with a Mr of 47.5 kDa was a heat-stable protein as demonstrated in other cells. The calpain activator did not change the Ca2+ sensitivity of calpain but activated calpain activity about 2-fold. This calpain activator may play an important role in the activation of the protease system leading to the Ca(2+)-mediated physiological process of platelets.  相似文献   

18.
19.
To identify the protein kinase that is responsible for catalyzing phosphorylation of actin-binding protein (ABP) in platelets, we have examined the effects of protein kinase C and cAMP-dependent protein kinase on this process. We found that purified platelet protein kinase C from platelets was unable to phosphorylate ABP in vitro. However, a crude platelet kinase preparation phosphorylated ABP in the presence of cAMP, but not in the presence of Ca2+/phosphatidylserine. Fresh platelet plasma membranes incubated with [gamma-32P]ATP phosphorylated ABP in the presence of cAMP and the process was blocked by a cAMP-dependent protein kinase inhibitor; ABP phosphorylation induced by prostaglandin E1 (PGE1) appeared to be reduced by the subsequent addition of thrombin. These results strongly suggest that in situ ABP is phosphorylated by activated cAMP-dependent protein kinase when platelet function is inhibited by PGE1. Furthermore, in the PGE1-treated platelets, ABP was proteolyzed at a slower rate than in control platelets when they were lysed with Triton in the absence of EGTA. Partially purified ABP was proteolyzed by calpain in vitro at a slower rate as well. It was demonstrated that ABP from PGE1-treated platelets recovered its sensitivity to calpain after ABP was incubated with a protein phosphatase that had been purified from platelets. We postulate that ABP is stabilized against proteolysis in response to cAMP-elevating agents and that this blocks cytoskeleton reorganization.  相似文献   

20.
Protein kinase C (PKC) is a family of serine/threonine kinases that regulate many different cellular processes such as cell growth and differentiation in eukaryotic cells. Using specific polyclonal antibodies raised against mammalian PKC isoforms, it was demonstrated here for the first time that Giardia duodenalis expresses several PKC isoforms (beta, delta, epsilon, theta and zeta). All PKC isoforms detected showed changes in their expression pattern during encystment induction. In addition, selective PKC inhibitors blocked the encystment in a dose-dependent manner, suggesting that PKC isozymes may play important roles during this differentiation process. We have characterized here the only conventional-type PKC member found so far in Giardia, which showed an increased expression and changes in its intracellular localization pattern during cyst formation. The purified protein obtained by chromatography on DEAE-cellulose followed by size-exclusion chromatography, displayed in vitro kinase activity using histone HI-IIIS as substrate, which was dependent on cofactors required by conventional PKCs, i.e., phospholipids and calcium. An open reading frame in the Giardia Genome Database that encodes a homolog of PKCβ catalytic domain was identified and cloned. The expressed recombinant protein was also recognized by a mammalian anti-PKCβ antibody and was referred as giardial PKCβ on the basis of all these experimental evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号