首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeasts lacking cytoplasmic superoxide dismutase (Cu,Zn-SOD) activity are permanently subjected to oxidative stress. We used two-dimensional PAGE to examine the proteome pattern of Saccharomyces cerevisiae strains lacking Cu,Zn-SOD. We found a new stable form of alkyl hydroperoxide reductase 1 (Ahp1) with a lower isoelectric point. This form was also present in wild type strains after treatment with tert-butyl hydroperoxide. In vitro enzyme assays showed that Ahp1p had lower specific activity in strains lacking Cu,Zn-SOD. We studied three mutants presenting a reduced production of the low pI variant under oxidative stress conditions. Two of the mutants (C62S and S59D) were totally inactive, thus suggesting that the acidic form of Ahp1p may only appear when the enzyme is functional. The other mutant (S59A) was active in vitro and was more resistant to inactivation by tert-butyl hydroperoxide than the wild type enzyme. Furthermore, the inactivation of Ahp1p in vitro is correlated with its conversion to the low pI form. These results suggest that in vivo during some particular oxidative stress (alkyl hydroperoxide treatment or lack of Cu,Zn-SOD activity but not hydrogen peroxide treatment), the catalytic cysteine of Ahp1p is more oxidized than cysteine-sulfenic acid (a natural occurring intermediate of the enzymatic reaction) and that cysteine-sulfinic acid or cysteine-sulfonic acid variant may be inactive.  相似文献   

2.
The subcellular localization of Cu,Zn-type superoxide dismutase (Cu,Zn-SOD) was investigated in rat tissues and cultured human fibroblasts. Subcellular fractionation, Nycodenz gradient centrifugation, and immunoblot analysis using specific antibodies showed that Cu,Zn-SOD was localized in cytosol, mitochondria, and peroxisomes of rat liver and brain. Treatment of highly purified mitochondria from rat liver with either Chaps or Triton X-100 released the bound Cu,Zn-SOD into supernatant fraction. Depolarization of mitochondria by inorganic phosphate and Ca(2+) released both Cu,Zn-SOD and cytochrome c from mitochondria. Digitonin also released Cu,Zn-SOD but not cytochrome c from mitochondria. Confocal immunofluorescence microscopy revealed that anti-Cu,Zn-SOD antibody in cultured human fibroblasts was found to colocalize with antibodies to Mn-SOD and PMP-70, markers of mitochondria and peroxisomes, respectively. Incubation of human Cu,Zn-SOD with purified mitochondria resulted in their association. These results indicate that Cu,Zn-SOD associates with mitochondria and peroxisomes in various cell types such as those in brain, liver, and skin.  相似文献   

3.
Developmental regulation of rat lung Cu,Zn-superoxide dismutase.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.  相似文献   

4.
Cu,Zn-Superoxide dismutase (SOD) was isolated from the liver of 3-, 12-, and 26-month-old Fisher 344 (F344) rats. Specific activity and metal content of the enzyme, purified by ion-exchange and size-exclusion chromatography, did not significantly change with age. Electrospray ionization-mass spectrometry and amino acid analysis of Cu,Zn-SOD apoprotein, further purified by reverse-phase HPLC, showed neither significant loss of amino acids nor accumulation of oxidized isoforms with age. When bovine Cu,Zn-SOD, oxidized with H(2)O(2) in vitro, was added to rat liver homogenate, we reisolated circa 70% of the oxidized bovine Cu,Zn-SOD together with the rat isoform, showing that oxidized Cu,Zn-SOD can be recovered from tissue homogenate. Therefore, our data do not confirm an earlier hypothesis that oxidatively modified Cu,Zn-SOD protein accumulates in the liver of aged F344 rats.  相似文献   

5.
自羊红细胞分离得到一种高等电点的铜.锌-超氧化物歧化酶(Cu.ZnSOD)。其沉降系数(S)为3.23,亚基分子量为16600,等电点为8.50,紫外最大吸收峰位于259nm,酶分子中含有铜和锌,氨基酸组成特点与其它动物来源的Cu.Zn-SOD相同。该酶的比活性为5500U/mg(黄嘌吟氧化酶—细胞色素还原法);对KCN的抑制作用敏感,最适pH值为6。  相似文献   

6.
《Free radical research》2013,47(5):401-405
Superoxide dismutase activity was measured in liver and lung from 3 and 24 month-old rats. Both total SOD and Mn-SOD activity decreased significantly in the liver of old rats. Recent results from our laboratory have indicated that during aging, the activity of Cu/Zn-SOD decreases in rat liver and that there is an accumulation of altered protein. It was also shown that the old Cu/Zn-SOD had one histidine fewer than the young one. In the present study, the immunoprecipitation experiments showed that the amount of immunoprecipitable Mn-SOD from liver of old rats was greater than from young ones, but when amino acid residues were measured in purified young and old Mn-SOD from liver, no change was observed. In lung, no significant age-related differences in total SOD, Cu/Zn-SOD and Mn-SOD activity were found, nor was there accumulation of altered protein during aging.  相似文献   

7.
Superoxide dismutase activity was measured in liver and lung from 3 and 24 month-old rats. Both total SOD and Mn-SOD activity decreased significantly in the liver of old rats. Recent results from our laboratory have indicated that during aging, the activity of Cu/Zn-SOD decreases in rat liver and that there is an accumulation of altered protein. It was also shown that the old Cu/Zn-SOD had one histidine fewer than the young one. In the present study, the immunoprecipitation experiments showed that the amount of immunoprecipitable Mn-SOD from liver of old rats was greater than from young ones, but when amino acid residues were measured in purified young and old Mn-SOD from liver, no change was observed. In lung, no significant age-related differences in total SOD, Cu/Zn-SOD and Mn-SOD activity were found, nor was there accumulation of altered protein during aging.  相似文献   

8.
9.
The objective of this research was to develop a method for measuring Cu/Zn-superoxide dismutase (Cu/Zn-SOD) (E.C. 1.15.1.1) in HL-60 cells and subsequently examine the relationship between cellular copper levels and the activity of this copper-requiring enzyme. In cells such as the neutrophil or HL-60 promyelocyte cell line, the activity of Cu/Zn-SOD cannot be measured because of an increase in the oxidation rate of the substrate by some unknown compound in the cells. Others have utilized heat treatment to inactivate the responsible compounds, however, we found that heat treatment of HL-60 cells resulted in a loss of over half of the activity of the enzyme. The method described here utilizes sodium azide to inhibit the substance(s) that are responsible for the enhanced rate of pyrogallol's oxidation. Gel filtration data confirmed that the compound responsible for the enhanced rate of pyrogallol oxidation was sensitive to azide and did not affect Cu/Zn-SOD activity. When HL-60 cells were incubated with various levels of copper, Cu/Zn-SOD activity did not reflect the cellular copper levels.  相似文献   

10.
Ox spleen ferritin was purified and its purity checked by two-dimensional immunoelectrophoresis and polyacrylamide plate electrophoresis. Microheterogeneity was shown with a preparation of purified ferritin by isoelectric focusing. The protein was separated into at least 6 fractions; two large fractions in the 4.50-4.55 pH range and another 4 in the 4.65-4.80 interval. Microheterogeneity was confirmed in purified preparations by crossed immunoelectrofocusing. Seven fractions were observed, the most acid ones (4.50-4.55) also being the most abundant. In the crossed IEF procedure, exactness in the isoelectrophoretic separation time is important in that excessive time may impair the resolution potential.  相似文献   

11.
In cytosolic fraction of adult Paragonimus westermani, superoxide dismutase activity was identified (4.3 units/mg of specific activity) using a xanthine-xanthine oxidase system. The enzyme was purified 150 fold in its activity using the ammonium sulfate precipitation, DEAE-Trisacryl M anion-exchange chromatography and Sephadex G-100 molecular sieve chromatography. The enzyme exhibited the enhanced activity at pH 10.0. The enzyme activity totally disappeared in 1.0mM cyanide while it remained 77.8% even in 10 mM azide. These findings indicated that the enzyme was Cu, Zn-SOD type. Molecular mass of the enzyme was estimated to be 34 kDa by gel filtration and 17 kDa on reducing SDS-polyacrylamide gel electrophoresis which indicated a dimer protein.  相似文献   

12.
Natural dicarbonyls, which may be accumulated during oxidative stress in atherosclerosis (e.g. malondialdehyde) or carbonyl stress in diabetes mellitus (glyoxal and methylglyoxal) effectively inhibited activities of commercial preparations of the antioxidant enzymes: Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and Se-contained glutathione peroxidase from human and bovine erythrocytes, and also rat liver glutathione-S-transferase. After incubation of human erythrocytes with 10 mM of each investigated dicarbonyls the decrease of intracellular Cu,Zn-SOD was observed. The decreased activity of erythrocyte Cu,Zn-SOD was also detected in patients with diabetes mellitus type 2 with carbohydrate metabolism impairments but effective sugar-lowered therapy was accompanied by the increase of this enzyme activity. The increase of erythrocytes Cu,Zn-SOD activity in diabetic patients treated with metformin (which may utilize methylgly-oxal) was higher than in erythrocytes of diabetic patients subjected to traditional therapy.  相似文献   

13.
Recently we have reported the detection of multiple net-charge and molecular mass variants of biliverdin reductase in the rat liver. We now report an apparent selective change in the electrophoretic profile of the reductase variants in the liver by in vivo bromobenzene treatment (2 mmol/kg, sc, 24 h). Using two-dimensional electrophoresis and isoelectric focusing, one molecular mass species of the reductase (Mr 30,400) appeared to be selectively suppressed by bromobenzene treatment. This molecular mass species was the main component of two isoelectric focusing bands with pI6.23 and 5.91. The effect in vivo of bromobenzene could not be duplicated by in vitro experiments involving treatment of purified enzyme with bromobenzene in the presence of a NADPH-dependent microsomal drug metabolizing system. The phenomenon of multiplicity of the reductase was not limited to the liver. Multiplicity of the enzyme was detected also in the spleen; however, the pattern of composition of the reductase variants vastly differed from that of the liver. In the spleen, variants with pI 5.76, 5.61, and 5.48 were the prevalent forms; the variant with pI 6.23 was absent, and pI 5.91 was present in a minute amount. Further, bromobenzene did not affect the composition pattern of net-charge variants in this organ. Also, the splenic biliverdin reductase activity was refractory to in vivo bromobenzene treatment, whereas the liver reductase activity with both NADH and NADPH was altered by the treatment. The possible significance of the presence of multiple variants of biliverdin reductase and the change in their composition caused by bromobenzene is discussed.  相似文献   

14.
Purification of rat angiotensinogen   总被引:2,自引:0,他引:2  
A method of purifying rat angiotensinogen in three chromatography steps with a yield 3-4 times better than previous methods is described. Using chromatofocusing media for two steps and DEAE-affigel blue for the third step it was possible to separate angiotensinogen into three major peaks with pI of 5.25 (peak B), 4.80 (peak C) and 4.50 (peak D). Peaks B and C were completely purified with recoveries of 12% and 17% and specific activities of 21.8 and 20.0 micrograms AI/mg protein respectively. Analytical SDS-PAGE showed a 53,000 dalton band in both peaks with additional 51,000 and 57,000 dalton bands in peak C.  相似文献   

15.
Liver cell-free extracts of fish (Mugil sp.) from polluted environments show new Cu, Zn-SOD isoenzymes when analyzed by polyacrylamide gel electrophoresis or isoelectrofocusing followed by in situ staining for SOD activity. The most active isoenzymes, with pI 6.1 and 5.1, were present both in control and problem samples while the isoenzymes of intermediate pI value showed significant differences. Fish from control areas showed three intermediate isoenzymes with pI 5.7, 5.5 and 5.4 (the last one quite faint) while polluted animals showed three bands of pI 5.9, 5.45 and 5.35, this last very intense. To further characterize their utility as biomarkers, Cu, Zn-SOD isoenzymes from polluted fish livers were purified to homogeneity. Five superoxide dismutase peaks were purified, named thereafter I (pI 6.1) to V (pI 5.1) respectively. Isoenzymes I and V displayed the highest specific activity. Upon incubation with moderate H2O2 concentrations, pure isoenzyme I yielded more acidic bands with pI 5.5, 5.45 and 5.35, this last being predominant. The pure isoenzyme V generated only a new band of pI 5.0. Concomitant with oxidation, the activity of peaks I and V was lost in a H2O2 concentration-dependent manner. The pattern of the new acidic bands generated upon the oxidixing treatment of isoenzyme I closely resembles that observed in crude extracts from polluted animals.  相似文献   

16.
Superoxide radicals are known to inhibit progesterone production by luteal cells and have also been reported to cause apoptosis in various cells. The corpus luteum has an antioxidant enzyme to scavenge superoxide radicals: copper-zinc superoxide dismutase (Cu, Zn-SOD). However, it remains unknown how the decrease in intracellular Cu,Zn-SOD activity influences luteal function. This study was therefore undertaken to investigate whether suppression of intracellular Cu,Zn-SOD activity inhibits progesterone production by rat luteal cells and causes apoptosis. To suppress intracellular Cu, Zn-SOD activity, dispersed rat luteal cells were incubated with Cu, Zn-SOD antisense oligonucleotides. The 48-h treatment with antisense oligonucleotides (10 microM) inhibited Cu,Zn-SOD activity by 50% and Cu,Zn-SOD mRNA level by 30%, whereas sense oligonucleotides used as the control had no effect. Progesterone concentration in the medium was significantly decreased by the 48-h treatment with antisense oligonucleotides in the presence of hCG, and this inhibitory effect was completely blocked by the simultaneous addition of N-acetyl-L-cysteine, an antioxidant. Treatment with antisense oligonucleotides caused no significant change in the percentage of apoptotic cells as morphologically evaluated by the nuclear staining with Hoechst dye. In conclusion, the decrease in intracellular Cu, Zn-SOD activities inhibits progesterone production by rat luteal cells, which may be mediated by superoxide radicals, suggesting that intracellular Cu,Zn-SOD plays important roles in the regulation of luteal function.  相似文献   

17.
Phosphate is an inhibitor of copper-zinc superoxide dismutase   总被引:2,自引:0,他引:2  
The superoxide dismutase (SOD) activity of bovine copper-zinc superoxide dismutase (Cu,Zn-SOD) in 50 mM Hepes [4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid], pH 7.4, was decreased by approximately 50% when the solution was made 10 mM in phosphate, in spite of the fact that the ionic strength of both solutions was adjusted to be equal. A similar experiment was carried out with bovine Cu,Zn-SOD chemically modified at Arg-141 with phenylglyoxal, which consequently had approximately 20% of the activity of the unmodified protein. (This activity was shown not to be due to residual unmodified protein.) Addition of 10 mM phosphate to solutions of the modified protein caused only a small decrease (less than 5%) in the SOD activity. The presence of phosphate also caused the affinity of Cu,Zn-SOD for binding azide or cyanide anions to be reduced; this effect of phosphate was also much less for the arginine-modified protein. We conclude that the inhibitory effect of phosphate on bovine Cu,Zn-SOD is due primarily to the neutralization of the positive charge on the side chain of Arg-141. The effect of increasing ionic strength on the activities of the native and arginine-modified proteins was also investigated. We found that at high concentrations of phosphate (greater than or equal to 10 mM), the SOD activities of native and arginine-modified Cu,Zn-SOD were inhibited comparably when the ionic strength was increased. This effect is presumably due to the lysine residues near the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The fragmentation of human Cu,Zn-superoxide dismutase (SOD) was observed during incubation with H(2)O(2). Hydroxyl radical scavengers such as sodium azide, formate and mannitol protected the fragmentation of Cu,Zn-SOD. These results suggested that *OH was implicated in the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation. Carnosine, homocarnosine and anserine have been proposed to act as anti-oxidants in vivo. We investigated whether three compounds could protect the fragmentation of Cu,Zn-SOD induced by H(2)O(2). The results showed that carnosine, homocarnosine and anserine significantly protected the fragmentation of Cu,Zn-SOD. All three compounds also protected the loss of enzyme activity induced by H(2)O(2). Carnosine, homocarnosine and anserine effectively inhibited the formation of *OH by the Cu,Zn-SOD/H(2)O(2) system. These results suggest that carnosine and related compounds can protect the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation through the scavenging of *OH.  相似文献   

19.
20.
The effect of superoxide dismutase (SOD) activity and isoenzyme pattern of detergents, incubation time, and sonication in the preparation of rat liver samples was investigated. The activity of the manganese form of the enzyme (Mn-SOD) was found to decrease significantly after 4 hr of incubation at room temperature, and activity of the copper, zinc form of the enzyme (Cu, Zn-SOD) was not changed significantly even after 24 hr, although levels were somewhat decreased. Sonication of the sample did not affect Cu, Zn-SOD activity, but total Mn-SOD activity was increased. Addition of detergents did not increase Mn-SOD activity when homogenates were sonicated, indicating that Mn-SOD is not membrane bound. Detergents also had no effect on Cu, Zn-SOD activity. None of the treatments investigated altered the isoenzyme patterns, providing evidence that these isoenzymes are not degradation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号