首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

2.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B (Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration.  相似文献   

3.
Itoh  Akira  Yamakura  Takuo  Ogino  Kazuhiko  Seng Lee  Hua  Ashton  Peter S. 《Plant Ecology》1997,132(2):121-136
Spatial distribution patterns of two emergent tropical rainforest tree species (Dryobalanops aromatica & D. lanceolata) were examined in where they were dominant (17–20% of total basal area of canopy trees) in Sarawak, East Malaysia. Newly established seedlings (< 2 years old) were restricted to areas < 40 m from mother trees for both species, suggesting a limited seed dispersal. Seedling (< 1 cm in dbh) density was highest around conspecific adults ( 30 cm in dbh). Negative spatial patterns were observed between larger juveniles (1–5 cm in dbh) and conspecific adults for both species; the most dense populations of sapling (1–5 cm in dbh) and poles (5–30 cm in dbh) were found at a distance of 15–20 m from the nearest conspecific adult. Seedlings of both species were distributed randomly with respect to light conditions evaluated by a forest floor diffuse site factor and a canopy closure index. Saplings of both species, and poles of D. lanceolata, were distributed under more open conditions than expected from spatially random distributions, and from average light conditions of all species of the same size classes. Possible mechanisms for the observed distribution patterns and intermediate canopy dominance of Dryobalanops were discussed from the viewpoints of gap-dynamics and distance-dependent mortality.  相似文献   

4.
High tree alpha-diversity in Amazonian Ecuador   总被引:14,自引:4,他引:10  
In a 1 ha square plot of terra firme forest at 260 m elevation in Amazonian Ecuador, all trees with diameter at breast height (dbh) 5 cm were studied. There were 1561 individuals, 473 species, 187 genera and 54 families. Of these, 693 individuals, 307 species, 138 genera and 46 families had a dbh 10 cm. This is the highest number of tree species ever recorded for a tropical rain forest sample of this size. In both dbh classes, the most species-rich families were: Fabaceae sensu lato (including Mimosaceae and Caesalpiniaceae), Lauraceae and Sapotaceae; the most species-rich genera, were Pouteria, Inga and Protium. The vertical space was partitioned among species: 166 species were found only in the 5–10 dbh cm class and were mostly sub-canopy treelets, and 307 species with dbh 10 cm were mostly large canopy trees.  相似文献   

5.
Birnbaum  P. 《Plant Ecology》2001,153(1-2):293-300
The canopy surface is an undulating surface that follows the irregular contours of the upper tree crowns and defines the inner and the outer limits of the forest volume. In French Guiana, the height of the canopy surface was surveyed in both a primary and a 20-years old clear-felled secondary forest plot. The topographic surface was displayed in a three-dimensional mesh, where X and Y are horizontal co-ordinates, and Z is the canopy height measured from the ground with an optical telemeter. The statistical dispersion of Z-data, and the spatial tree height variations, are interpreted at different levels of ecosystem organisation, from forest type (primary or secondary forest) to the trees themselves, following the folded forest model theory (Oldeman 1992, 1994). The vertical growth of trees creates a convex pattern in the relief of canopy surface, whereas gaps make concavities which delimit impact of perturbation on the forest structure. These events are either the result of the dynamic of single trees (emergent and decayed trees), or arise from the dynamic of a group of trees working together (group of emergent trees or complex gaps). At the plot scale, the elementary events, convexities and concavities, are gathered on similar topo-sequences, and form canopy units either higher or lower than the average canopy height. This study suggests that the topography of the canopy surface is defined by a complex nested system from trees, to groups of trees, to canopy units, within a delimited floristic and physical environment.  相似文献   

6.
Abstract. Regeneration levels, size class distributions and a nearest neighbour technique were used to describe apreliminary dynamics frameworkfortheplateauforests. Taken over a large area, most of the canopy dominants have a negative exponential distribution of stems > 10 cm dbh per size class. In small (0.04 ha) plots, if present as more than one stem, most species are present as both canopy (> 25 cm dbh) and understorey (10–15 cm dbh) individuals. The canopy dominants maintain their rank in the bank of advance regeneration (> 5 cm height < 10 cm dbh). However, relative numbers of all regeneration of most canopy individuals are not strongly correlated with canopy closure or local abundance of conspecific adults. The mean area of nearest neighbour polygons of canopy individuals around saplings of the more common species are small. In conclusion, most species appearto be shade tolerant and locally persistent conferring a fine grain on this forest. We support recent questioning of universality of the gaps/non gaps paradigm.  相似文献   

7.
In 1979 and 1991, trees over 2.0 m high were measured and mapped together with their crown projections to clarify stand dynamics and shifts in canopy dominants during this period, in a permanent plot of 0.525 ha in an old-growth, cool temperate mixed forest of Mt Moiwa, Central Hokkaido, northern Japan. During this period, an abundant recruitment of trees was observed after some canopy trees were felled by a typhoon in 1981 leaving gaps in the canopy. Vigorous recruitment was observed forTilia japonica, Acer mono andPrunus ssiori. These species had different regeneration sites in relation to canopy state. NeitherUlmus japonica norKalopanax pictus had any recruits during the 12 year period even in gaps. The equilibrium composition of tree species projected from transition probability analysis also implied the above shift of dominant species during the 12 year period in the plot and suggested that the present forest is not in an equilibrium state.  相似文献   

8.
The structure and dynamics of approximately 64 ha of undisturbed gallery forest were studied over six years. Trees from 31 cm gbh (c. 10 cm dbh) were measured every three years from 1985. They were in 151 (10×20 m) permanent plots in the Gama forest in the Federal District of Brazil. Natural regeneration (individuals under 31 cm gbh) was measured in subplots (of 2×2 m, 5×5 m and 10×10 m) within the 200 m2 plots. The total tree flora (gbh31 cm) consisted of 93 species, 81 genera and 44 families in 1985. The Leguminosae, Myrtaceae and Rubiaceae were the families richest in number of species. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter per species ranged from 30 to 95 cm. The density structure of trees and natural regeneration was similar, in which the densities of c. 80% of the species represented less than 1% of the total density. The periodic mean annual diameter increment for trees from 10 cm dbh, was c. 0.25 cm/year. Variability was high with coefficients of variation c. 100% or more. The Gama community may maintain tree diversity and structure in undisturbed conditions. Regeneration of c. 80% of the species was found in the establishing phase (poles); the diameter structure was typical of native forests with the number of individuals decreasing with increasing size classes and showing little change over the six years; recruitment compensated for the mortality of most of the abundant species. The soils in Gama gallery forest were dystrophic with high aluminium content. Multivariate analysis suggested the stream, natural gaps and edges as the main causes of floristic differentiation at the community level.  相似文献   

9.
We examined the effects of different life history strategies and tree competition on species coexistence in a northern coniferous forest. We investigated the growth and demography of trees with stems ≥1 cm dbh in a 2-ha study plot in the Taisetsu Mountains of northern Japan. Three species, Abies sachalinensis, Picea jezoensis, and Picea glehnii, were found to be dominant in the forest. A. sachalinensis was the most dominant species in the understory, while the two Picea spp. were more abundant in the larger dbh size classes. The turnover rate of A. sachalinensis was about twice that of the Picea spp. The relative growth rate of understory trees in each species did not differ between different canopy conditions (closed canopy or canopy gap). The competitive advantage between A. sachalinensis and P. glehnii switched as they grew from understory (A. sachalinensis superior competitor) to canopy trees (P. glehnii superior competitor). Meanwhile, A. sachalinensis and P. jezoensis exhibited different environmental preferences. We propose that reversal in competitive superiority between different growth stages and trade-off between longevity and turnover are more important factors to promote their coexistence than regeneration niche differentiation related to canopy gaps in this sub-boreal coniferous forest.  相似文献   

10.
Lianas (woody climbers) are structural parasites of trees that compete with them for light and below‐ground resources. Most studies of liana–tree interactions are based on ground‐level observations of liana stem density and size, with these assessments generally assumed to reflect the amount of liana canopy cover and overall burden to the tree. We tested this assumption in a 1‐ha plot of lowland rainforest in tropical Australia. We recorded 1072 liana stems (≥1 cm diameter at breast height {dbh}) ha?1 across all trees (≥10 cm dbh) on the plot and selected 58 trees for detailed study. We estimated liana canopy cover on selected trees that hosted 0–15 liana individuals, using a 47‐m‐tall canopy crane. Notably, we found no significant correlations between liana canopy cover and three commonly used ground‐based measurements of liana abundance as follows: liana stem counts per tree, liana above‐ground biomass per tree and liana basal area per tree. We also explored the role of tree size and liana infestation and found that larger trees (≥20 cm dbh) were more likely to support lianas and to host more liana stems than smaller trees (≤20 cm dbh). This pattern of liana stem density, however, did not correlate with greater liana coverage in the canopy. Tree family was also found to have a significant effect on likelihood of hosting lianas, with trees in some families 3–4 times more likely to host a liana than other families. We suggest that local ground‐based measures of liana–tree infestation may not accurately reflect liana canopy cover for individual trees because they were frequently observed spreading through neighbouring trees at our site. We believe that future liana research will benefit from new technologies such as high‐quality aerial photography taken from drones when the aim is to detect the relative burden of lianas on individual trees.  相似文献   

11.
The variation in species composition of trees 7.6 cm gbh in thirty-eight plots (mostly c. 0.2 ha in extent) from physiognomically-defined kerangas forest were re-analyzed by principal components analysis ordination (species centering and standardization by sample norm). Analyses were performed separately on basal area abundances, on the densities of trees in three size classes (7.6, 30.5 and 61.0 cm gbh) and on the density of small and large trees (7.6-<30.5 and 30.5-<61.0 cm gbh). A total of 636 taxa were reduced to 381 for analysis, removing those of very low density and plot frequency.Three groups of plots were identified: forest at low elevation, and generally coastal, on deep humus podzols; forest at intermediate elevation on mostly red-yellow podzols with affinities to dipterocarp forest; and forest at high elevation on mostly peaty podzols. The first group was divisible into five subgroups along a drainage gradient, while the more poorly drained plots showing affinities to peatswamp forest. Forty to eighty of the taxa, depending on the criteria for selection, were sufficient to define a stable, reduced spatial structure of the data matrix. Two subgroups, both coastal on deep podzols, represent the extreme form of kerangas forest per se. A comparison of Agathis borneensis- and Shorea albida-dominated plots revealed few other associated and differentiating taxa.Patterns were clearest from analyses of basal area data and of densities of all and small trees. Ordinations and grouping of plots for small, but not large, tree densities were similar to those for basal area. Different species were differentiated on the basis of the abundance measure, leading to group (tabular) definition of associations in a dual manner. A new system of summarization is presented which combines basal area, density and frequency in a graded hierarchical approach.The association between vegetation and soil type was difficult to unravel because of the limited environmental space sampled. Soil type was confounded with elevation, rainfall and geographical location. A major factor is clay content probably affecting nutrient status and water holding properties. Modal analysis of small tree densities showed clearest patterns in this respect. There were no patterns at the family or genus level, nor in leaf size spectra within kerangas.Problems in the treatment, analysis and summarization of tropical forest data sets are discussed. These problems centre on the scale and intensity of field sampling and the advantages of measuring small trees leading to a dual basal area and density approach. All published studies, including this one, within kerangas forest have used inadequate sampling for the purposes of revealing species changes with respect to soil type and composition.  相似文献   

12.
Tree community structure and dynamics of a 5.8 ha fragment of montane semideciduous forest in south-eastern Brazil are described based on two successive surveys of trees with dbh 5 cm carried out in 1987 and 1992 in 126 20 × 20 m quadrats. The main purpose was to assess whether the spatial variation of dynamic and structural variables were related to edge-effects and past disturbance regimes. The totals for the two surveys were, respectively, 6528 and 6770 trees, and 94.89 and 108.53 m2 of basal area. The forest fragment was at an aggrading sylvigenetic phase, indicated by an overall net increase in density and basal area, and by a declining proportion of trees of smaller size. The overall annual mortality and recruitment rates were 2.6% and 3.0%, respectively. The dynamic process, however, was strongly affected by spatial heterogeneity. The more severely disturbed sectors had lower average canopy heights and basal areas per hectare, and higher tree densities, proportions of smaller trees, and relative area of canopy gaps. They also had higher mortality and recruitment rates, resulting in higher turnover rates compared to the sectors which suffered only moderate disturbance regimes. Edge sectors were also affected by different past disturbance regimes. However, they stood out by having a particularly high frequency of liana tangles and the highest rates of net increase both in density and basal area. A canonical correspondence analysis indicated that the effects of past disturbance regimes and edges were highly related to the species distribution in the area. Pioneer species were concentrated on the edges and more severely disturbed sectors, shade-tolerant species were particularly more abundant on the moderately disturbed sites, while light-demanding ones were more widely distributed. Tree community structure was also undergoing important changes, with less common species enjoying higher recruitment rates and density increase compared to the more common ones. Shade-tolerant species were increasing in relative abundance and had comparatively lower mortality rates and higher recruitment rates. On the other hand, pioneer species were under retreat, with a decreasing relative abundance, higher mortality rates and lower recruitment rates.Nomenclature: Oliveira-Filho et al. 1994a,d.  相似文献   

13.
Forest community dynamics were studied for 4 years in a 6 ha permanent plot of species rich, old-growth, temperate deciduous forest in Ogawa Forest Reserve, central Japan. The gap formation rate, recruitment, mortality, gain and loss rate in basal area during 4 years were 42 m2 ha–1 yr–1, 1.74% yr–1, 1.19% yr–1, 1.12% yr–1 and 0.88% yr–1, respectively. The turnover time calculated from them ranged from 58 to 240 years. Both the mortality and mortality factors were size dependent; trees in middle size class had smallest mortality, and the proportion of the trees killed by disturbances increased with size. Gap creations were concentrated in a particular year, suggesting a large heterogeneity in time. Spatial distribution of recruited trees were biassed to the old gaps (older than 4 years), especially that of the species with Bell-shaped dbh distribution (shade intolerant) strongly associated with the gaps. Recruitment in tree stems and the loss of basal area, thus had the larger variability than mortality of stems and this forest, and the species with L-shaped dbh distribution seemed to going to increase the importance in the future if the present trend continues to be held. The turnover time of population is positively correlated with the maximum dbh size of the species, indicating the slow change of the population of large sized species.  相似文献   

14.
We studied regeneration patterns of three tree species Picea ajanensis, Betula platyphylla and Populus tremula from 1998 to 2000 in the Central Depression of the Kamchatka Peninsula. We paid special attention to the contribution of sprouting to their regeneration. P. ajanensis was the only species that regenerated by seedling. In a 40 × 40 m study plot, the density of P. ajanensis saplings < 2.0 cm in diameter at basal area (DBH) was 1132, and this was the highest among the three species studied. The number of saplings 2 cm in DBH declined sharply with size class. The spatial distribution of P. ajanensis saplings (< 2 cm in DBH) showed a significant positive correlation with that of adult trees and a negative correlation with that of gaps. These trends were not changed after re-measurement in 2000, although nearly half of the juveniles had died or been injured during the two years. These results suggest that small Picea saplings prefer habitats under the canopy of adult trees rather than in gaps for establishment. Most small individuals of B. platyphylla were produced from sprouts. The number of saplings in the smallest size class (< 2 cm in DBH) was much less than that of P. ajanensis, although the number of larger individuals did not decrease remarkably. The spatial distribution of B. platyphylla saplings showed a positive correlation with that of adult trunks and a negative correlation with that of canopy trees of P. ajanensis. These results suggest an effective contribution of sprouts to the regeneration of B. platyphylla. P. tremula was the only species that could invade big gaps and produce many root suckers efficiently. There were 181 suckers of P. tremula in the smallest size class (< 2 cm in DBH) in the study plot, although the number of saplings 2 cm in DBH declined abruptly. The spatial distribution of saplings of this species showed a slight positive correlation with that of gaps, and negative correlation with that of adult trees of B. platyphylla, P. ajanensis, and P. tremula. The root suckering strategy of P. tremula might be adaptive under severe conditions in high-latitude regions. Our data suggest, however, that it does not necessarily contribute to regeneration in mature forests. The three component species in this forest did not seem to utilize canopy gaps for regeneration; we suggest that gap dynamics do not work in this forest. The sparse canopy, which is a typical character of forests in high-latitude regions, might be a consequence of high mortalities of seedlings and root suckers inside gaps.  相似文献   

15.
Temporal changes and spatial variation of soil drainage and understory light availability in 2001 and 2002, small stem (5 ≤ dbh (diameter at breast height) < 10 cm) density, forest successional phase and large stem (dbh ≥ 10 cm) spatial distribution were investigated in 1 ha of tropical swamp forest in southeastern Brazil. Building patches and treefall gaps comprised, respectively, 69.75 and 7.5% of the area in 2002. Semivariograms indicated spatial segregation of successional phases, with mature areas predominating in the North and gaps aggregated into the South. Exclusion of outliers showed large unpredictability of background variation in canopy openness, but patches with high canopy openness values concentrated along the South and East plot borders. Overall canopy openness increased from 2001 to 2002, and was locally autocorrelated between years. In 2001, well-drained and flooded sites comprised 46.75 and 38.19% of the study area, respectively, and were not spatially autocorrelated. In the study period, the number of flooded sites decreased by 40.4%. Canopy openness and small stem density were independent from drainage and were not correlated. Large trees aggregated at scales larger than 40 m, while arborescent palms were aggregated at all scales. Our findings suggest that tropical swamp forests have architectural characteristics similar to that of young, secondary forests and treefall gaps in old-growth forests. Patterns at larger scales pointed to the occurrence of widespread forest degradation, which seems to be particularly advanced in some forest sectors.  相似文献   

16.
Stand structure and regeneration in a Kamchatka mixed boreal forest   总被引:1,自引:0,他引:1  
Abstract. A 1‐ha plot was established in a Betula platyphylla‐Picea ajanensis mixed boreal forest in the central Kamchatka peninsula in Russia to investigate stand structure and regeneration. This forest was relatively sparse; total density and stand basal area were 1071/ha and 25.8 m2/ha, respectively, for trees > 2.0 cm in trunk diameter at breast height (DBH). 25% of Betula regenerated by sprouting, and its frequency distribution of DBH had a reverse J‐shaped pattern. In contrast, Picea had a bimodal distribution. The growth rates of both species were high, reaching 20 m in ca. 120 yr. The two species had clumped distributions, especially for saplings. Betula saplings were not distributed in canopy gaps. Small Picea saplings were distributed irrespective of the presence/absence of gaps, while larger saplings aggregated in gaps. At the examined spatial scales (6.25–400 m2) the spatial distribution of Betula saplings was positively correlated with living Betula canopy trees and negatively with dead Picea canopy trees. This suggests that Betula saplings regenerated under the crowns of Betula canopy trees and did not invade the gaps created by Picea canopy trees. The spatial distribution of Picea saplings was negatively correlated with living and dead Betula canopy trees and positively with dead Picea canopy trees. Most small Picea seedlings were distributed under the crowns of Picea trees but not under the crowns of Betula trees or in gaps. This suggests that Picea seedlings establish under the crowns of Picea canopy trees and can grow to large sizes after the death of overhead Picea canopy trees. Evidence of competitive exclusion between the two species was not found. At a 20 m × 20 m scale both skewness and the coefficient of variation of DBH frequency distribution of Picea decreased with an increase in total basal area of Picea while those of Betula were unchanged irrespective of the increase in total basal area of Betula. This indicates that the size structure of Picea is more variable with stand development than that of Betula on a small scale. This study suggests that Betula regenerates continuously by sprouting and Picea regenerates discontinuously after gap formation and that the species do not exclude each other.  相似文献   

17.
The spatial distribution of trees in relation to topography was investigated using two topographic indices, slope steepness and slope configuration, in a 4-ha plot in a subtropical evergreen forest in the northern part of Okinawa Island, Japan. Most species showed an aggregated distribution and patch size was related to various microtopographical features, including small ridges and valleys. In a cluster analysis based on the dissimilarity of each species distribution, the species were divided into three major clusters. A significant correlation between the dissimilarity and the distance between each species on the axis of the two topographic indices indicated that species association was, in part, explained by the topographic indices. I suggest that species distributed on steep and concave slopes regenerate depending on disturbances such as landslides on unstable topography, whereas species distributed on ridges and upper slopes regenerate depending on the canopy gap. A number of species that were less abundant in the 4-ha plot occurred in the riparian area near a stream, where the density of more abundant species was low. The results of this study support the existence of habitat niche divergence related to topography in a subtropical evergreen broad-leaved forest.  相似文献   

18.
Death of canopy trees when gaps are formed was studied in a subalpine coniferous forest, central Japan, which was composed ofAbies, Tsuga, Picea, Betula, andSorbus. Typhoons were considered to be the most important cause of the death of canopy trees. The degree of disturbance in each of 16 plots (20 m×20 m) was represented by the percentage of the total basal area of dead trees to that of living and dead canopy trees (disturbance magnitude; MAG). The mortality of canopy trees increased as their dbh increase in the plots of lower MAG than 90%. The mortality varied among genera, andTsuga was characterized as having lower mortality than that of the other conifers. 418 dead trees were observed. The standing dead trees made up 10.7% of the trees, the stem broken trees 46.7%, and the uprooted trees 42.2%. The stem breaking was most frequent inAbies, and the uprooting was most frequent inTsuga, Picea, andBetula. Undeveloped forests, which have the L-shaped dbh distribution, were destroyed only in high degree (70%<MAG), while developed forests were destroyed in various degrees (30%<MAG<100%). The percentage of uprooted trees in basal area decreased with the development of the forest, from 60% to 10%.  相似文献   

19.
Two 1 ha plots of undisturbed upper montane rain forest in southern Ecuador were sampled for all trees with a dbh ≥ 5 cm. An extraordinarily high α-diversity for a forest near treeline is described. The "non-ridge forest" plot at 2900 m elevation has 75 species and 28 families ha-1 and is believed to represent an advanced stage of succession whereas, the "ridge forest" plot at 2700 m elevation with 90 species and 38 families ha-1 has a more rapid turn-over rate probably due to a more unstable environment. Downslope forces (soil creep) are discussed as a possible cause for 32–44% of all trees being inclined more than 30° in the moderately steep terrain (average slope 20° in both study plots). The plot of "non-ridge forest" is characterized by a much greater biomass whether expressed as basal area (44 m2 versus 15 m2) or stem volume (214 m3 versus 52 m3), while the density is equally high (2310 versus 2090 trees ha-1) in both plots. Families with Family Importance Value >25 / ha-1 are Clusiaceae, Cunoniaceae, Melastomataceae, Myrsinaceae, and Ternstroemiaceae.  相似文献   

20.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号