首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here, we consider species assembly models where the population dynamics is kept far from fixed points through the continuous introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction. These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate trophic level, in agreement with field studies.  相似文献   

2.
Predicting species abundance is one of the most fundamental pursuits of ecology. Combining the information encoded in functional traits and metacommunities provides a new perspective to predict the abundance of species in communities. We applied a community assembly via trait selection model to predict quadrat-scale species abundances using functional trait variation on ontogenetic stages and metacommunity information for over 490 plant species in a subtropical forest and a lowland tropical forest in Yunnan, China. The relative importance of trait-based selection, mass effects, and stochasticity in shaping local species abundances is evaluated using different null models. We found both mass effects and trait selection contribute to local abundance patterns. Trait selection was detectable at all studied spatial scales (0.04–1 ha), with its strength stronger at larger scales and in the subtropical forest. In contrast, the importance of stochasticity decreased with spatial scale. A significant mass effect of the metacommunity was observed at small spatial scales. Our results indicate that tree community assembly is primarily driven by ontogenetic traits and metacommunity effects. Our findings also demonstrate that including ontogenetic trait variation into predictive frameworks allows ecologists to infer ecological mechanisms operating in community assembly at the individual level.  相似文献   

3.
4.
The diversity and composition of biological communities might often depend on colonization history because early colonists can exclude future colonists through a priority effect. These priority effects, which have been observed across a wide variety of ecosystems, often arise because early colonists have sufficient time to use available resources efficiently and subsequently withhold them from invaders. Here, we explore the extent to which rapid local adaptive evolution contributes to the pervasiveness of these priority effects. Using an individual-based simulation, we show that early colonization allows the descendants of colonists to adapt to novel conditions and reduce the establishment success of an initially ecologically equivalent competing species. Our model predicts that slight differences in colonization timing and adaptive capacity between species can substantially alter the dynamics and diversity of communities. We also show that priority effects and gene flow can generate a novel mechanism for the expansion and retraction of species distributions in a metacommunity. Our results suggest that local adaptation combined with stochastic colonization events can obscure direct relationships between species distributions and environmental gradients. Given the increasing recognition of rapid, microgeographic evolution in natural populations, we expect that evolutionary priority effects could affect the structure and dynamics of many natural metacommunities.  相似文献   

5.
Vole disturbances and plant diversity in a grassland metacommunity   总被引:1,自引:0,他引:1  
Questad EJ  Foster BL 《Oecologia》2007,153(2):341-351
We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch (1 m2) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity scale, we expected burrows to increase resource heterogeneity and have a community composition distinct from the matrix. We measured resource variables and plant community composition in 30 paired plots representing disturbed burrows and undisturbed matrix patches in a cool-season grassland. Vole disturbance affected the mean values of nine resource variables measured and contributed more to resource heterogeneity in the metacommunity than matrix plots. Disturbance increased local plant species richness, metacommunity evenness, and the presence and abundance of fugitive species. To learn more about the contribution of burrow and matrix habitats to metacommunity diversity, we compared community similarity among burrow and matrix plots. Using Sorenson’s similarity index, which considers only presence–absence data, we found no difference in community similarity among burrows and matrix plots. Using a proportional similarity index, which considers both presence–absence and relative abundance data, we found low community similarity among burrows. Burrows appeared to shift the identity of dominant species away from the species dominant in the matrix. They also allowed subordinate species to persist in higher abundances. The patterns we observed are consistent with several diversity-maintaining mechanisms, including a successional mosaic and alternative successional trajectories. We also found evidence that prairie voles may be ecosystem engineers.  相似文献   

6.
沿长江中下游(宜昌-铜陵段)13座城市共37个位点,分别于丰水期和枯水期对岸带的湿生植物进行调查,从物种和系统发育2个维度研究群落的构建机制,并结合环境和空间因子探讨其驱动因素。结果显示:(1)丰水期湿生植物群落的α多样性高于枯水期,且丰水期α多样性主要与水分条件呈正相关,而枯水期则主要与温度和土壤总氮含量有关。(2)丰水期的系统发育结构指数呈聚集趋势,暗示生境过滤起着主导作用,而枯水期的NRI(net relatedness index)和NTI(nearest taxon index)呈不同趋势,暗示存在近期的群落分化。(3)群落的α多样性在物种层面和系统发育层面存在显著关联性,其多样性水平可在一定程度上互为表征。(4)长江中下游沿岸湿生植物群落的构建机制在不同时期存在差异,丰水期的群落构建是环境筛选和扩散限制共同作用的结果,且以环境筛选作用占主导,而枯水期的群落构建仅在物种层面受一定程度环境筛选作用的影响。(5)大生境的温度变化、微生境的土壤水分和养分条件是影响长江中下游岸带湿生植物群落差异的主要驱动因素。该研究结果可为长江中下游岸带湿地生态系统的管理和保护提供科学支持。  相似文献   

7.
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.  相似文献   

8.
In the companion paper of this set (Capitán and Cuesta, 2010) we have developed a full analytical treatment of the model of species assembly introduced in Capitán et al. (2009). This model is based on the construction of an assembly graph containing all viable configurations of the community, and the definition of a Markov chain whose transitions are the transformations of communities by new species invasions. In the present paper we provide an exhaustive numerical analysis of the model, describing the average time to the recurrent state, the statistics of avalanches, and the dependence of the results on the amount of available resource. Our results are based on the fact that the Markov chain provides an asymptotic probability distribution for the recurrent states, which can be used to obtain averages of observables as well as the time variation of these magnitudes during succession, in an exact manner. Since the absorption times into the recurrent set are found to be comparable to the size of the system, the end state is quickly reached (in units of the invasion time). Thus, the final ecosystem can be regarded as a fluctuating complex system where species are continually replaced by newcomers without ever leaving the set of recurrent patterns. The assembly graph is dominated by pathways in which most invasions are accepted, triggering small extinction avalanches. Through the assembly process, communities become less resilient (e.g., have a higher return time to equilibrium) but become more robust in terms of resistance against new invasions.  相似文献   

9.
Previous studies have shown that high-resolution, empirical food webs possess a non-random network structure, typically characterized by uniform or exponential degree distributions. However, the empirical food webs that have been investigated for their structural properties represent local communities that are only a subset of a larger pool of regionally coexisting species. Here, we use a simple model to investigate the effects of regional food web structure on local food webs that are assembled by two simple processes: random immigration of species from a source web (regional food web), and random extinction of species within the local web. The model shows that local webs with non-random degree distributions can arise from randomly structured source webs. A comparison of local webs assembled from randomly structured source webs with local webs assembled from source webs generated by the niche model shows that the former have higher species richness at equilibrium, but have a nonlinear response to changing extinction rates. These results imply that the network structure of regional food webs can play a significant role in the assembly and dynamics of local webs in natural ecosystems. With natural landscapes becoming increasingly fragmented, understanding such structure may be a necessary key to understanding the maintenance and stability of local species diversity.  相似文献   

10.
Explaining the causes of geographic gradients in biodiversity remains an elusive task. Traditionally, correlative approaches have been used to relate species richness with contemporary climate, without actually explaining the causal factors. Recent approaches propose simulation models as more appropriate tools for assessing potential causes of macroecological patterns. Here we developed stochastic models to assess the relative contribution of climate and niche conservatism in determining compositional similarity among sites (co-diversity) and geographic association among species (co-distribution) in the bat family Phyllostomidae. We used range-diversity plots and variance-ratio tests to describe and evaluate such patterns. Our results supported a strong effect of climate in determining cohesive ranges causing positive co-diversity and co-distribution. We also demonstrated a marginal effect of niche conservatism, as modeled here, among species in shaping these patterns. However, climate and niche conservatism are not sufficient and other processes are still required to explain observed patterns. Our study highlights the importance of historical processes and demonstrates the usefulness of a simulation framework in testing biogeographical hypothesis to understand the relationship between diversity and distribution.  相似文献   

11.
12.
13.
Abstract. The community structure of 11 lawn sites in New Zealand and Fiji was examined in terms of guilds, seeking assembly rules based on guild proportionality. First, associations were analysed, using a new patch model which examined the mean of associations within patches of about 4 cm x 4 cm. As expected from the previously-demonstrated existence of niche limitation at this scale in lawns, the majority of associations between individual species were negative. Even in a lawn only four months old there were significant associations (mostly negative, and one positive). At some sites those species with the most negative associations were those whose morphology might be expected to restrict co-existence with other species. Much ecological theory is based on the assumption that there are limitations to coexistence, related to the resource usage of the species, such that species that are too similar in resource use are less likely to coexist. This theory was tested by looking for evidence of guild proportionality. We defined two guilds, graminoids and forbs. Using these guilds, three of the sites showed significant evenness in proportional representation from the two guilds in quadrats containing four species, i.e. there was less variation in the graminoid:forb ratio than expected on a random basis. Inclusion of species-poor quadrats in a joint analysis over all richness categories overwhelmed this effect, though there was still a strong trend for two of the New Zealand sites: the two species-rich grass lawns. Preliminary analyses of alternative guild delimitations gave no indication that other guild delimitations would have revealed stronger community structure. There was a strong and significant tendency in most sites for the graminoid guild to be more strongly represented in species-poor quadrats, an effect caused by species frequencies.  相似文献   

14.
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach--integrating different biological scales of trait variation--may provide a better understanding of the mechanisms involved in the structure of communities.  相似文献   

15.
Various ecological processes influence patterns of species diversity at multiple spatial scales. One process that is potentially important but rarely considered is community assembly. I assembled model communities using species pools of differing size to examine how the history of community assembly may affect multi-scale diversity patterns. The model contained three scales at which diversity could be measured: local community, metacommunity, and species pool. Local species saturation occurred, as expected from the competition and predation built in the model. However, local communities did not become resistant to invasions except when the species pool was very small. Depending on dispersal rate and trophic level, the larger the species pool, the harder it was to predict which species invades which local community at a given time. Consequently, local-community dissimilarity maintained by assembly history increased linearly with pool size, even though local diversity was decoupled from pool size. These results have two implications for multi-scale diversity patterns. First, assembly history may provide an explanation for scale-dependent relationships between local and regional diversity: assembly causes the relationship to be curvilinear at one scale (local community), while linear at another (metacommunity). Second, assembly history influences how -diversity is partitioned into - and -diversity: assembly causes the relative contribution of to increase with pool size. Overall, this study suggests that community assembly history interacts with species pool size to regulate multi-scale patterns of species diversity.  相似文献   

16.
Several ecological studies and monitoring programs of biodiversity have shown that using fewer collecting methods in biological surveys is more efficient than several redundant ones. However, in an attempt to increase species detection, researchers are still using as many field methods as possible in the surveys of arthropods and other megadiverse groups of invertebrates. The challenge is to reduce the overall time and effort for surveys while still retaining as much information about species richness and assemblage composition as possible. Researchers usually face a trade-off of loosing some information in order to have more efficient surveys. Here we show that more species were obtained in harvestmen surveys using a reduced version of the traditional method of active nocturnal search. We evaluated both the congruence and efficiency of the beating tray, and three versions of active nocturnal search across a tropical forest area in the Amazon basin. As nocturnal search has long been proved to be the most efficient method to capture arachnids, we tested three variations of this method in an attempt to improve harvestmen survey. A total of 2338 individuals of 23 species, in 20 genera and 10 families, were recorded using all methods together. Just one method, the active cryptic nocturnal search, encountered all taxa sampled with the maximum effort (sum of all methods) and data from this method recovered the ecological patterns found by the more intensive methods. Financial costs and time spent sampling and identifying specimens were reduced by 87% when compared to the maximum effort. We suggest that only one method, active cryptic nocturnal search, is the most efficient method to both sample and monitor harvestmen in Amazon tropical forests.  相似文献   

17.
Kitahara and Fujii, in 1994, analyzed the butterfly communities along a gradient of human disturbance by applying the generalist/specialist concept. Butterfly species were classified into generalist or specialist species based on their voltinism (seasonal time dimension) and potential larval resource breadth (food dimension). The community structure and species composition showed the systematic changes along the gradient. To verify the generality of those trends, we monitored five grassland butterfly communities with varying degrees of human disturbance twice a month during 1985 by the line transect method at the foot of Mt. Fuji, central Japan, and analyzed their structure in a manner similar to that employed by Kitahara and Fujii. Most results were consistent with the patterns recognized by Kitahara and Fujii. The route (community) order based on increasing human disturbance was strongly and negatively correlated with butterfly species richness but with neither butterfly species diversity (H′) nor evenness (J′). Also, the degree of human disturbance was significantly and negatively correlated with the number of specialist species, but not with that of generalists, in a community. Butterfly species richness was more strongly correlated with the number of specialist species than with that of generalists. Our analyses also showed that the generalist species were distributed more widely over the communities than were the specialists. However, in contrast to the trend revealed by Kitahara and Fujii, there was no significant difference in the population densities and in the spatial population variability between the two species groups. As a whole, our analyses confirmed the consistency of most community patterns detected by Kitahara and Fujii. The causes of the inconsistencies in some patterns were thought to be mainly the present habitat conditions with a relatively short growing season at high altitudes. Received: October 19, 1999 / Accepted: June 5, 2000  相似文献   

18.
19.
Abstract. The species pool concept has been used as a theoretical framework for understanding local community richness. A significant problem in putting the concept into practice is the lack of methods for determining the size of the species pool. We tested the hypothesis that species composition of recent forests is primarily determined by the species composition of neighbouring older forests against the null‐hypothesis that species are a random sample of the species occurring in the study area. Forest plant species composition of recently established fragments was significantly correlated with species composition in neighbouring older forests (i.e. the local species pool). When older forest within a neighbourhood of 1000m radius is considered, seed dispersal sources can be found for 91% of the flora in the recent forests. For an individual fragment, dispersal is a much more important determinant of species presence than the environment, with an average of 46% of the total pool excluded from local pools by dispersal limitation and only 8% excluded by environmental limitations. The species richness of recent forests is on average 23% of the local species pool. Several hypotheses are proposed for this low percentage, such as asymmetric competition due to the early successional state or the limited colonization period.  相似文献   

20.
Recently we have introduced a simplified model of ecosystem assembly (Capitán et al., 2009) for which we are able to map out all assembly pathways generated by external invasions in an exact manner. In this paper we provide a deeper analysis of the model, obtaining analytical results and introducing some approximations which allow us to reconstruct the results of our previous work. In particular, we show that the population dynamics equations of a very general class of trophic-level structured food-web have an unique interior equilibrium point which is globally stable. We show analytically that communities found as end states of the assembly process are pyramidal and we find that the equilibrium abundance of any species at any trophic level is approximately inversely proportional to the number of species in that level. We also find that the per capita growth rate of a top predator invading a resident community is key to understand the appearance of complex end states reported in our previous work. The sign of these rates allows us to separate regions in the space of parameters where the end state is either a single community or a complex set containing more than one community. We have also built up analytical approximations to the time evolution of species abundances that allow us to determine, with high accuracy, the sequence of extinctions that an invasion may cause. Finally we apply this analysis to obtain the communities in the end states. To test the accuracy of the transition probability matrix generated by this analytical procedure for the end states, we have compared averages over those sets with those obtained from the graph derived by numerical integration of the Lotka-Volterra equations. The agreement is excellent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号