首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed.  相似文献   

3.
4.
5.
6.
7.
8.
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) displays two distinct life stages, latency and lytic reactivation. Progression through the lytic cycle and replication of the viral genome constitute an essential step toward the production of infectious virus and human disease. KSHV K-RTA has been shown to be the major transactivator required for the initiation of lytic reactivation. In the transient-cotransfection replication assay, K-Rta is the only noncore protein required for DNA synthesis. K-Rta was shown to interact with both C/EBPα binding motifs and the R response elements (RRE) within oriLyt. It is postulated that K-Rta acts in part to facilitate the recruitment of replication factors to oriLyt. In order to define the role of K-Rta in the initiation of lytic DNA synthesis, we show an interaction with ORF59, the DNA polymerase processivity factor (PF), one of the eight virally encoded proteins necessary for origin-dependent DNA replication. Using the chromatin immunoprecipitation (ChIP) assay, both K-Rta and ORF59 interact with the RRE and C/EBPα binding motifs within oriLyt in cells harboring the KSHV bacterial artificial chromosome (BAC). A transient-transfection ChIP assay demonstrated that the interaction of ORF59 with oriLyt is dependent on binding with K-Rta and that ORF59 fails to bind to oriLyt in the absence of K-Rta. Also, using the cotransfection replication assay, overexpression of the interaction domain of K-Rta with ORF59 has a dominant negative effect on oriLyt amplification, suggesting that the interaction of K-Rta with ORF59 is essential for DNA synthesis and supporting the hypothesis that K-Rta facilitates the formation of a replication complex at oriLyt.  相似文献   

9.
Productive infection and replication of herpesviruses usually occurs in growth-arrested cells, but there has been no direct evidence in the case of Epstein-Barr virus (EBV), since an efficient lytic replication system without external stimuli does not exist for the virus. Expression of the EBV lytic-switch transactivator BZLF1 protein in EBV-negative epithelial tumor cell lines, however, is known to arrest the cell cycle in G(0)/G(1) by induction of the tumor suppressor protein p53 and the cyclin-dependent kinase (CDK) inhibitors p21(WAF-1/CIP-1) and p27(KIP-1), followed by the accumulation of a hypophosphorylated form of the Rb protein. In order to determine the effect of the onset of lytic viral replication on cellular events in latently EBV-infected B LCLs, a tightly controlled induction system of the EBV lytic-replication program by inducible BZLF1 protein expression was established in B95-8 cells. The induction of lytic replication completely arrested cell cycle progression and cellular DNA replication. Surprisingly, the levels of p53, p21(WAF-1/CIP-1), and p27(KIP-1) were constant before and after induction of the lytic program, indicating that the cell cycle arrest induced by the lytic program is not mediated through p53 and the CDK inhibitors. Furthermore, although cellular DNA replication was blocked, elevation of cyclin E/A expression and accumulation of hyperphosphorylated forms of Rb protein were observed, a post-G(1)/S phase characteristic of cells. Thus, while the EBV lytic program promoted specific cell cycle-associated activities involved in the progression from G(1) to S phase, it inhibited cellular DNA synthesis. Such cellular conditions appear to especially favor viral lytic replication.  相似文献   

10.
11.
12.
When exposed to genotoxic stress, eukaryotic cells demonstrate a DNA damage response with delay or arrest of cell-cycle progression, providing time for DNA repair. Induction of the Epstein-Barr virus (EBV) lytic program elicited a cellular DNA damage response, with activation of the ataxia telangiectasia-mutated (ATM) signal transduction pathway. Activation of the ATM-Rad3-related (ATR) replication checkpoint pathway, in contrast, was minimal. The DNA damage sensor Mre11-Rad50-Nbs1 (MRN) complex and phosphorylated ATM were recruited and retained in viral replication compartments, recognizing newly synthesized viral DNAs as abnormal DNA structures. Phosphorylated p53 also became concentrated in replication compartments and physically interacted with viral BZLF1 protein. Despite the activation of ATM checkpoint signaling, p53-downstream signaling was blocked, with rather high S-phase CDK activity associated with progression of lytic infection. Therefore, although host cells activate ATM checkpoint signaling with response to the lytic viral DNA synthesis, the virus can skillfully evade this host checkpoint security system and actively promote an S-phase-like environment advantageous for viral lytic replication.  相似文献   

13.
14.
15.
The propagation of herpesviruses has long been viewed as a temporally regulated sequential process that results from the consecutive expression of specific viral transactivators. As a key step in this process, lytic viral DNA replication is considered as a checkpoint that controls the expression of the late structural viral genes. In a novel genetic approach, we show that both hypotheses do not hold true for the Epstein-Barr virus (EBV). The study of viral mutants of EBV in which the early genes BZLF1 and BRLF1 are deleted allowed a precise assignment of the function of these proteins. Both transactivators were absolutely essential for viral DNA replication. Both BZLF1 and BRLF1 were required for full expression of the EBV proteins expressed during the lytic program, although the respective influence of these molecules on the expression of various viral target genes varied greatly. In replication-defective viral mutants, neither early gene expression nor DNA replication was a prerequisite for late gene expression. This work shows that BRLF1 and BZLF1 harbor distinct but complementary functions that influence all stages of viral production.  相似文献   

16.
Epstein-Barr virus (EBV) is a human DNA virus that is responsible for the syndrome infectious mononucleosis, and is associated with several forms of cancer. During both lytic and latent viral infection, viral proteins manipulate the host's cellular components to aid in viral replication and maintenance. Here, it is demonstrated that induction of EBV lytic replication results in a dramatic reorganization of mitochondria accompanied by a significant alteration of mitochondrial membrane potential and a rapid and transient increase in the microtubular cytoskeleton. Moreover, we show that expression of the EBV immediate-early genes BZLF1 and BRLF1 contributes to the mitochondrial alteration but not the increase in the microtubule cytoskeleton, suggesting that the mechanism for the observed cytoplasmic restructuring involves a number of coordinated viral and host proteins.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号