首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anoxia tolerance and ethanol sensitivity of rice (Oryza sativa L.) and oat (Avena sativa L.) seedlings were evaluated to clarify their growth habit in anoxia. Anoxic stress inhibited elongation and dry weight gain of coleoptiles of the oat and rice seedlings; however, the inhibition of the oat coleoptiles was much greater than that of the rice coleoptiles. Anoxic stress increased endogenous ethanol concentration and alcohol dehydrogenase activity in oat and rice coleoptiles and their increases in the rice coleoptiles were much greater than those in the oat coleoptiles. At concentrations greater than 30 mM and 300 mM, exogenously applied ethanol inhibited the elongation and weight gain for the oat and the rice coleoptiles, respectively, and the inhibition was increased with increasing ethanol concentrations with marked inhibition being achieved on the oat coleoptiles. These results suggest that anoxia tolerance and induction of ethanolic fermentation in anoxia may be greater in rice than oat, and ethanol sensitivity of rice may be lower than that of oat.  相似文献   

2.
Robert E. Cleland 《Planta》1991,186(1):75-80
A controversy exists as to whether or not the outer epidermis in coleoptiles is a unique target for auxin in elongation growth. The following evidence indicates that the outer epidermis is not the only auxin-responsive cell layer in either Avena sativa L. or Zea mays L. coleoptiles. Coleoptile sections from which the epidermis has been removed by peeling elongate in response to auxin. The magnitude of the response is similar to that of intact sections provided the incubation solution contains both auxin and sucrose. The amount of elongation is independent of the amount of epidermis removed. Sections of oat coleoptiles from which the epidermis has been removed from one side are nearly straight after 22 h in auxin and sucrose, despite extensive growth of the sections. These data indicate that the outer epidermis is not a unique target for auxin in elongation growth, at least in Avena and maize coleoptiles.Abbreviations IAA indole-3-acetic acid - PCIB p-chlorophenoxyiso-butyric This research was supported by grants from the National Aeronautics and Space Administration and from the U.S. Department of Energy. The help of S. Ann Dreyer is gratefully acknowledged.  相似文献   

3.
At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.  相似文献   

4.
Diclofop-methyl (DM) (ester) was readily absorbed by peeled and unpeeled coleoptiles of wheat, Triticum aestivum L. cv. Waldron, and oat, Avena sativa L. cv. Garry. Substantial absorption of diclofop (acid) occurred only in peeled coleoptiles of the two species. IAA-induced acidification in peeled coleoptiles of both species was inhibited by 100 μ M DM or diclofop (acid) during a 3 to 4 h period. There was no recovery of acidification after DM or diclofop inhibition in oat coleoptiles; however, acidification in wheat coleoptiles recovered from inhibition by DM but not from diclofop. The recovery from DM inhibition may be due to a reduction in the diclofop pool derived from DM by efflux and metabolism (detoxification) in peeled wheat coleoptiles. Diclofop was not detoxified in oat coleoptiles. IAA-induced elongation of unpeeled oat coleoptiles was inhibited totally by 100 μ M DM but not by 100 μ M diclofop after 3.3 h of treatment. Wheat coleoptile elongation was relatively unaffected by either DM or diclofop. Basal elongation (no IAA) of both wheat and oat coleoptiles was inhibited by DM and diclofop. The inhibition by DM appeared to be irreversible, whereas the inhibition by diclofop was overcome by the addition of 10 μ M IAA.  相似文献   

5.
A. Brüdern  G. Thiel 《Protoplasma》1999,209(3-4):246-255
Summary Protoplasts are frequently isolated from maize coleoptiles with cell-wall-degrading enzymes such as pectolyase (PEC), mazerozyme, and cellulase. Incubation of coleoptiles with these enzymes caused rapid depolarizations of the membrane voltage (V M ). The depolarizing effect of 0.5% (w/v) mazerozyme or 1.5% (w/v) cellulase was unaffected by denaturation of the enzymes. In the case of pectolyase (0.1%, w/v), however, the active enzyme was significantly more potent than the denaturated enzyme in depolarizing coleoptile cells. Exposure to 0.1% active PEC but not to inactive PEC also caused an oxidative burst in coleoptiles and enhanced K+ efflux. Together this suggests that pectic breakdown products of the cell wall act as signal for wounding. Typically addition of 10 M 1-naphthylene acetic acid (NAA) to coleoptiles causes a transient depolarization followed by a slow hyperpolarization of V M . However, in the presence of PEC, V M only depolarized in NAA. After PEC-treated coleoptiles were washed free of the enzyme, NAA caused only small fluctuations of V M . A similarly small V M response to NAA appeared in coleoptiles pretreated with heatdenaturated supernatant (SUP) from a protoplast isolation buffer, the latter suspected to contain the PEC-generated wounding signal. Comparable pretreatment of coleoptiles with PEC or SUP had no significant effect on the spontaneous and NAA-evoked acidification of the incubation medium. Pretreatment with SUP also had no significant effect on the NAA-stimulated elongation of coleoptile segment. Hence, PEC treatment of coleoptile tissue affects the membrane transport properties of the cells. This effect is partly maintained after removal of the enzyme from the incubation medium, an effect not significant for NAA-generated acidification and cell elongation.Abbreviations V M membrane voltage - Vred redox voltage - PEC pectolyase - SUP supernatant from cell wall digestion - NAA 1-naphthylene acetic acid  相似文献   

6.
Indole-3-acetic acid (IAA), fusicoccin and weak acids all lower the cytoplasmic pH (pHi) and induce elongation growth of maize (Zea mays L.) coleoptiles. Gibberellic acid (GA3) also induces elongation growth and we have used confocal laser scanning microscopy to study the effects of GA3 on pHi employing the pH-indicator dyes, 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein and carboxy-semi-naphthorhodafluor-1. We confirm that GA3 induces growth significantly in light-grown but only slightly or not at all in dark-grown coleoptiles. The growth induced by IAA treatment was similar in light- and dark-grown coleoptiles. The pHi decreased by up to 0.6 units during the first 7 min of GA3 or IAA treatment of both light- and dark-grown coleoptiles. Gibberellic acid inhibited IAA-induced growth of dark-grown coleoptiles. Hence, in dark-grown coleoptiles GA3 may activate either directly or indirectly reactions that interfere with the signalling pathway leading to elongation growth. The possible role of pHi in growth is discussed.Abbreviations ABA abscisic acid - AM acetoxymethyl ester - BCECF 2,7-bis(2-carboxyethyl)-5-(and-6) carboxyfluorescein - [Ca2+]i cytoplasmic free calcium - GA(n) gibberellin A(n) - GA3 gibberellic acid - IAA indole-3-acetic acid - PGR plant growth regulator - pHi cytoplasmic pH - Pipes piperazine-N,N-bis[2-ethanesulfonic acid] - Snarf-1 carboxy-semi-naphthorhodafluor-1 We thank Dr R. King (CSIRO, Canberra) for providing the GA1 and T. Phillips for processing the photographic material. H.R. Irving was supported by an Australian Research Council Research Fellowship and the work was supported by an Australian Research Council grant.  相似文献   

7.
Ethanolic fermentation and anoxia tolerance in four rice cultivars   总被引:1,自引:0,他引:1  
The relationship between coleoptile elongation and ethanolic fermentation was investigated in rice (Oryza sativa L.) coleoptiles of four cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress; however, the elongation of cvs Yukihikari and Nipponbare was much greater than that of cvs Leulikelash and Asahimochi. The stress did not significantly increase lactate dehydrogenase (LDH) activity or lactate concentration, but increased alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) activities, as well as ethanol concentration in the coleoptiles of all cultivars. The elevated ADH and PDC activities and ethanol concentration in cvs Yukihikari and Nipponbare were much greater than those of cvs Leulikelash and Asahimochi, suggesting that ethanolic fermentation is likely more active in cvs Yukihikari and Nipponbare than in cvs Leulikelash and Asahimochi. ATP concentration in cvs Yukihikari and Nipponbare in anoxia was also greater than that in cvs Leulikelash and Asahimochi in anoxia. The ethanol concentration in the coleoptiles was correlated with anoxia tolerance with respect to the ATP concentration and coleoptile elongation. These results suggest that the ability to increase ethanolic fermentation may be one of the determinants in anoxia tolerance of rice coleoptiles.  相似文献   

8.
The relationship between anoxia tolerance and reserved carbohydrate catabolism was investigated in four rice (Oryza sativa L.) cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress, however, the elongation of cvs Koshihikari and Awa-akamai was much greater than that of cvs Touzoumochi and Asahimochi. The anoxic coleoptiles of cvs Koshihikari and Awa-akamai contained about 2-fold as much ATP as those of cvs Touzoumochi and Asahimochi. Ethanol production in the anoxic coleoptiles of cvs Koshihikari and Awa-akamai was about 2-fold as much as that of cvs Touzoumochi and Asahimochi, which suggests that ethanolic fermentation is probably more active in cvs Koshihikari and Awa-akamai than in cvs Asahimochi and Touzoumochi. Activity of α-amylase, which catabolizes starch to soluble sugars, in endosperms of cvs Koshihikari and Awa-akamai was about 2-fold that of cvs Touzoumochi and Asahimochi, and soluble sugar concentration in the coleoptiles of cvs Koshihikari and Awa-akamai was about 3-fold greater than that of cvs Touzoumochi and Asahimochi. Soluble sugar concentration and ethanol production rate in the coleoptiles of rice seedlings were correlated well with α-amylase activity in their endosperms, which were also correlated well with anoxia tolerance with respect to the coleoptile elongation and ATP concentration in the coleoptiles. These results suggest that the ability to degrade starch to soluble sugar by α-amylase in endosperm may be important for the anoxia tolerance in rice coleoptiles and it may serve to distinguish the anoxia tolerance of rice coleoptiles.  相似文献   

9.
R. J. Rose  D. Adamson 《Planta》1969,88(3):274-281
Summary -irradiated wheat seed (500 kr) produces coleoptiles that grow without cell division or DNA synthesis. Apart from an initial 24-hr delay in growth, intact coleoptiles have a pattern of cell elongation similar to normal coleoptiles. The elongation of coleoptiles excised at a size of 2 mm, when the cells are small and just prior to entering a rapid elongation phase, is promoted by kinetin and gibberellic acid (GA3). Elongation of coleoptiles excised at 8 mm, when the cells are larger and in the rapid elongation phase, is promoted by indoleacetic acid (IAA). This sequential response to growth substances in coleoptiles is remarkably similar to that in normal coleoptiles. The GA3 response in excised coleoptiles is not inhibited by FUDR, confirming that DNA synthesis is not required for GA3-induced elongation in coleoptiles.  相似文献   

10.
Edelmann HG  Roth U 《Protoplasma》2006,229(2-4):183-191
According to the Cholodny-Went hypothesis, gravitropic differential growth is brought about by the redistribution of auxin (indolyl-3-acetic acid, IAA). We reinvestigated the relevance of different auxins and studied the role of ethylene in hypocotyls of sunflower and shoots and roots of rye and maize seedlings. Incubation of coleoptiles and of sunflower hypocotyls in solutions of IAA and dichlorophenoxyacetic acid as well as naphthylacetic acid resulted in a two- to threefold length increase compared to water controls. In spite of this pronounced general effect on elongation growth, gravi-curvature was similar to water controls. In contrast to this, inhibition of ethylene synthesis by aminoethoxyvinylglycine prevented differential growth of both hypocotyls and coleoptiles and of roots of maize. In horizontally stimulated maize roots growing on surfaces, inhibition of ethylene perception by methylcyclopropene inhibited roots to adapt growth to the surface, resulting in a lasting vertical orientation of the root tips. This effect is accompanied by up- and down-regulation of a number of proteins as detected by two-dimensional matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Together the data query the regulatory relevance of IAA redistribution for gravitropic differential growth. They corroborate the crucial regulatory role of ethylene for gravitropic differential growth, both in roots and coleoptiles of maize as well as in hypocotyls.  相似文献   

11.
Cell walls of grasses have two major polysaccharides that contain uronic acids, the hemicellulosic glucuronoarabinoxylans and the galactosyluronic acid-rich pectins. A technique whereby esterified uronic acid carboxyl groups are reduced selectively to yield their respective 6,6-dideuterio neutral sugars was used to determine the extent of esterification and changes in esterification of these two uronic acids during elongation of maize (Zea mays L.) coleoptiles. The glucosyluronic acids of glucuronoarabinoxylans did not appear to be esterified at any time during coleoptile elongation. The galactosyluronic acids of embryonal coleoptiles were about 65% esterified, but this proportion increased to nearly 80% during the rapid elongation phase before returning to about 60% at the end of elongation. Methyl esters accounted for about two-thirds of the total esterified galacturonic acid in cell walls of unexpanded coleoptiles. The proportion of methyl esters decreased throughout elongation and did not account for the increase in the proportion of esterified galactosyluronic acid units during growth. The results indicate that the galactosyluronic acid units of grass pectic polysaccharides may be converted to other kinds of esters or form ester-like chemical interactions during expansion of the cell wall. Accumulation of novel esters or ester-like interactions is coincident with covalent attachment of polymers containing galactosyluronic acid units to the cell wall.  相似文献   

12.
Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid, the precursor of ethylene, stimulated elongation of coleoptiles of seedlings of intact rice ( Oryza sativa L. cv. Sasanishiki) submerged in buffer solution with constant air-bubbling. The osmotic pressure of the cell sap decreased during elongation of coleoptiles. In the presence of 30 μ M aminooxyacetic acid, an inhibitor of ethylene biosynthesis, in-dole-3-acetic acid at 30 μ M accelerated the decrease in the osmotic pressure in the early stage of growth. 1-Aminocyclopropane-1-carboxylic acid at 30 μ M did not influence the decrease in the osmotic pressure.
Both indole-3-acetic acid and 1-aminocyclopropane-1-carboxyIic acid decreased the minimum stress-relaxation time and the relaxation rate of the cell wall, suggesting that both auxin and ethylene induce elongation of rice coleoptiles by stimulating cell wall loosening. These growth regulators caused an increase in the level of glucose in hemicelluloses in the early stage of growth and a decrease in the level in the subsequent last growth phase. Indole-3-acetic acid decreased the hydroxyproline and glucosamine levels per unit dry weight of the cell wall. These changes in the level of cell wall components may be associated with the changes in the mechanical properties of the cell walls caused by auxin and ethylene.  相似文献   

13.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

14.
Auxin activity of 3-methyleneoxindole in wheat   总被引:4,自引:3,他引:1       下载免费PDF全文
Basu PS  Tuli V 《Plant physiology》1972,50(4):499-502
A product of the enzymatic oxidation of indole-3-acetic acid, 3-methyleneoxindole, is at least 50-fold more effective than indole-3-acetic acid in stimulating the growth of wheat (Triticum vulgare, red variety) coleoptiles. Ethylenediaminetetra-acetic acid can antagonize the growth-stimulating properties of the parent compound, indole-3-acetic acid, presumably by chelating Mn2+, which is required for the enzymatic oxidation of indole-3-acetic acid. The growth stimulating effect of 3-methyleneoxindole, a product of the blocked reaction, on the other hand, is still evident in the presence of ethylenedia-minetetraacetic acid. In the presence of 2-mercaptoethanol, indole-3-acetic acid fails to stimulate the elongation of wheat coleoptiles. The property of binding to sulfhydryl compounds including 2-mercaptoethanol is unique to 3-methyleneoxindole among indole-3-acetic acid and its oxidation products. These findings suggest that 3-methyleneoxindole is an obligatory intermediate in indole-3-acetic acid induced elongation of wheat coleoptiles.  相似文献   

15.
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles.  相似文献   

16.
As described previously, the sensitivity of rice (Oryza sativa L.) coleoptiles to auxin is modulated by oxygen. Under anoxia, coleoptile elongation is insensitive to exogenously applied indole-3-acetic acid (IAA), whereas its sensitivity increases in air in the presence of the exogenous stimulus. Here we report the presence of two independent classes of membrane-bound IAA-binding sites in air-grown coleoptiles. Their binding activity is strictly correlated with the system's sensitivity to IAA. We designate them as site A (high affinity) and site B (low affinity). Site A shows a relatively fast response to anoxia, and is highly specific for auxins. Regulation of site-A binding activity through ATP, whose availability decreases under anoxia, is postulated. A role as auxin carrier is suggested for site B.Abbreviations ABS(s) auxin-binding site(s) - IAA indole-3-acctic acid - NAA 2-naphthaleneacetic acid - ION3 valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenyl hydrazone Dedicated to the memory of Professor G. Torti, who passed away on 2 May, 1988  相似文献   

17.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

18.
Hydroxyl radicals (OH) are capable of unspecifically cleaving cell-wall polysaccharides in a site-specific reaction. I investigated the hypothesis that cell-wall loosening underlying the elongation growth of plant organs is controlled by apoplastically produced OH attacking load-bearing cell-wall matrix polymers. Isolated cell walls (operationally, frozen/thawed, abraded segments from coleoptiles or hypocotyls, respectively) from maize, cucumber, soybean, sunflower or Scots pine seedlings were pre-loaded with catalytic Cu or Fe ions and then incubated in a mixture of ascorbate + H2O2 for generating OH in the walls. This treatment induced irreversible wall extension (creep) in walls stretched in an extensiometer. The reaction could be promoted by acid pH and inhibited by several OH scavengers. Generation of OH by the same reaction in living coleoptile or hypocotyl segments caused elongation growth. Auxin-induced elongation growth of maize coleoptiles could be inhibited by OH scavengers. Auxin promoted the production of superoxide radicals (O2(-)), an OH precursor, in the growth-controlling outer epidermis of maize coleoptiles. It is concluded that OH fulfils basic criteria for a wall-loosening factor acting in auxin-mediated elongation growth of plant species with widely differing cell-wall polysaccharide compositions.  相似文献   

19.
Synthesis and properties of lunularic acid   总被引:1,自引:0,他引:1  
Lunularic acid, a natural plant growth inhibitor, has been synthesized. A high concentration (10–30 ppm) effectively inhibited the elongation of root coleoptiles caused by 0·3 and 0·03 ppm indole-3-acetic acid.  相似文献   

20.
Auxin-induced elongation of com coleoptiles is accompanied by cell wall acidification, which depends upon H+-pump activity. We tested the hypothesis that phospholipase A and a protein kinase are involved in the pathway of auxin signal transduction leading to H+ secretion, and elongation of corn coleoptiles. Initially, the pH of the bath solution at 50–100 μm from the surface of a coleoptile segment (pHo) ranged between 4.8 and 6.6 when measured with an H+-sensitive microelectrode. Twenty or 50 μM lysophosphatidylcholine, 50 μM linolenic acid or 50 μM arachidonic acid induced a decline in pHo by 0.3 to 2.1 units. The effect was blocked by 1 mM vanadate, suggesting that lysophosphatidylcholine or linolenic acid induced acidification of the apoplast by activating the H+-pump. Lysophosphatidylcholine and linolenic acid also accelerated the elongation rate of the coleoptiles. While linolenic acid and arachidonic acid, highly unsaturated fatty acids, promoted pHo decrease and coleoptile elongation, linoleic acid, oleic acid, and stearic acid, fatty acids with a lesser extent of unsaturation, had no such effects. The effects of lysophosphatidylcholine, linolenic acid, and arachidonic acid on H+ secretion were not additive to that of indoleacetic acid (IAA), suggesting that lysophospholipids, fatty acids and auxin use similar pathways for the activation of the H+-pump. The phospholipase A2 inhibitors, aristolochic acid and manoalide, inhibited the IAA-induced pHo decrease and coleoptile elongation. The general protein kinase inhibitors, H-7 or staurosporine, blocked the IAA- or lysophosphatidylcholine-induced decrease in pHo. H-7 also inhibited the coleoptile elongation induced by IAA or lysophosphatidylcholine. These results support the hypothesis that phospholipase A is activated by auxin, and that the products of the enzyme, lysophospholipids and fatty acids, induce acidification of the apoplast by activating the H+-pump through a mechanism involving a protein kinase, which in turn promotes com coleoptile elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号