首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative burst is a defense mechanism used by specialized phagocytes such as granulocytes or monocytes to kill the invading microorganisms through generation of superoxide anions. Oxidative burst also results in DNA damage of the phagocytes. Phagocytes are terminally differentiated and some of very short life-span cells. We could find no reports whether oxidative burst-mediated DNA damage triggers in such cells histone H2AX-Ser139 phosphorylation and activation of Ataxia Telangiectasia Mutated (ATM), the signals otherwise used to activate DNA repair and checkpoint pathways in proliferating cells. We now present the evidence that induction of oxidative stress in human peripheral blood leukocytes by phorbol myristate acetate (PMA) was associated with intense phosphorylation of histone H2AX and with ATM activation, seen already 60 min after exposure to PMA. The modifications of H2AX and ATM in individual granulocytes, monocytes and lymphocytes were detected prior to caspases activation and thus were unrelated to induction of apoptosis. A large intercellular variation in response was observed, and only a fraction of cells in these subpopulations showed H2AX and ATM modifications. The data are compatible with the earlier observations of DNA damage during oxidative burst and suggest that even in terminally differentiated cells that have a short life-span, DNA damage triggers recruitment of the DNA repair machinery. The observed H2AX phosphorylation in lymphocytes may reflect their DNA damage by the superoxide ions propagating from the neighboring granulocytes and/or monocytes.  相似文献   

2.
C5a exerts various known harmful functions during experimental sepsis and blocking strategies demonstrated survival benefits in experimental sepsis. We investigated its potential for priming of oxidative burst in blood neutrophils and monocytes and the involvement of various signaling pathways. We here report that C5a induced priming of neutrophils and monocytes for Escherichia coli- and PMA-induced oxidative burst. This effect was strongly dependent on intact ERK1/2 signaling. P38 inhibition resulted in abrogation of C5a-induced priming only for E. coli-induced oxidative burst and PKC blockade had this effect only for PMA-induced burst. JNK inhibition had no impact. Our results demonstrate for the first time distinct involvement of ERK1/2, p38 and PKC pathways for C5a-induced priming of oxidative burst in phagocytes.  相似文献   

3.
Helicobacter pylori can colonize the gastric epithelium of humans, leading to the induction of an intense inflammatory response with the infiltration of mainly polymorphonuclear leucocytes (PMNs) and monocytes. These professional phagocytes appear to be a primary cause of the damage to surface epithelial layers, and probably contribute to the pathogenesis associated with persistent H. pylori infections. We have shown previously that H. pylori adheres to professional phagocytes, but is not engulfed efficiently, suggesting an antiphagocytic escape mechanism that is dependent on the pathogen's type IV secretion system. Here, we show that H. pylori induces the generation and extracellular release of oxygen metabolites as a consequence of its attachment to phagocytic cells, but is capable of surviving this response. The catalase activity of H. pylori is apparently essential for survival at the phagocytes' cell surface. Opsonization of H. pylori leads to an increased burst, and the inhibition of bacterial protein synthesis to a decreased one. Ca2+ concentration, cytoskeleton rearrangement and protein kinase C (PKC) are involved in the H. pylori-induced oxidative burst in both monocytes and PMNs. This survival phenomenon has important implications for both the persistence of this important pathogen and the host tissue damage that accompanies persistent H. pylori infection.  相似文献   

4.
This present study examined the effects of high concentrations of nitric oxide (NO*) and peroxynitrite (ONOO-) on superoxide (O2*-) production from formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated polymorphonuclear leukocytes (PMNs) by using electron spin resonance (ESR) and spin trapping with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO). We demonstrated that ONOO- (100 microM) decreased the ESR signal of DEPMPO-OOH from fMLP-activated PMNs, indicating the inhibition of O2*- generation, while it enhanced the signal of DEPMPO-OH. Inhibition of the respiratory burst was also observed when PMNs were pre-exposed to high concentrations of NO* (100 microM), generated by the NO* donor NOR-1, 30 min prior to stimulation with fMLP. NOR-1 inhibited O2*- generation more effectively under conditions in which ONOO-was formed concurrently. The ability of high concentrations of either ONOO- or NO* to inhibit O2*-generation from fMLP-stimulated PMNs is relevant to pathophysiological conditions, such as severe inflammation, in which NO* or ONOO- production can be significantly elevated.  相似文献   

5.
When human neutrophils are incubated with LPS, they become primed for enhanced release of O2- in response to stimulation by FMLP. We investigated two aspects of LPS priming: 1) whether priming depends on secretion of TNF-alpha by monocytes present in neutrophil preparations, and 2) whether plasma is required for priming. Using plasma-Percoll gradients, we isolated neutrophils that contained only 0.1% monocytes. At 37 degrees C, these neutrophils were significantly primed by LPS (100 ng/ml) within 30 min. In contrast, LPS-treated monocytes required 60 min to secrete significant neutrophil-priming activity, the major component of which was TNF-alpha. Further, antibody against TNF-alpha failed to inhibit priming of neutrophils by LPS at 15, 30, and 45 min, and inhibited only 15% at 60 min. The results suggested that TNF-alpha or other factors from monocytes were not essential for priming of neutrophils by LPS. Neutrophils that had been washed free of plasma by centrifugation through 50% Percoll responded only weakly to LPS with respect to priming for enhanced O2- release and increased expression of alkaline phosphatase activity on the cell surface. Priming of washed neutrophils could be restored by adding back plasma (0.1 to 1.0%). This effect of plasma was not blocked by heating the plasma to 56 degrees C but was blocked at 100 degrees C. LPS priming could be blocked by polymyxin B, even in the presence of plasma. Thus, priming required both LPS and plasma. Neutrophils incubated with LPS in the absence of plasma were not primed by subsequent addition of plasma, but were primed by addition of plasma and LPS. Culture supernatants from neutrophils incubated with 20 ng/ml LPS in the absence of plasma failed to prime fresh neutrophils, but supernatants from neutrophils incubated with LPS in the presence of 1% plasma were able to prime fresh neutrophils. These results implied that neutrophils inactivated LPS and that plasma protected LPS from inactivation. Nevertheless, such inactivated LPS retained the ability to gel Limulus lysate at 10 pg/ml, and the ability to prime monocytes at 100 pg/ml. Thus, plasma prevented a neutrophil-specific inactivation of LPS.  相似文献   

6.
The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b(558), the cytosol factors p47(phox), p67(phox), p40(phox), and the small GTPase Rac2, which translocate to the membrane to assemble the active complex following neutrophil activation. Interleukin-8 (IL-8) does not activate NADPH oxidase, but potentiates the oxidative burst induced by stimuli such as formyl-methionyl-leucyl-phenylalanine (fMLP) via a priming mechanism. The effect of IL-8 on the components of NADPH oxidase during the priming process has never been investigated in human neutrophils. Here we showed that within 3 min, IL-8 treatment enhanced the Btk- and ERK1/2-dependent phosphorylation of p47(phox), as well as the recruitment of flavocytochrome b(558), p47(phox), and Rac2 into cholesterol-enriched detergent-resistant microdomains (or lipid rafts). Conversely, IL-8 treatment lasting 15 min failed to recruit flavocytochrome b(558), p47(phox), or Rac2, but did enhance the Btk- and p38 MAPK-dependent phosphorylation and the translocation of p67(phox) into detergent-resistant microdomains. Moreover, methyl-beta-cyclodextrin, which disrupts lipid rafts, inhibited IL-8-induced priming in response to fMLP. Our findings indicate that IL-8-induced priming of the oxidative burst in response to fMLP involves a sequential assembly of the NADPH oxidase components in the lipid rafts of neutrophils.  相似文献   

7.
OBJECTIVE AND DESIGN: The fungicidal and bactericidal actions of the essential oil (EO) of Melaleuca alternifolia seem well established, but their anti-inflammatory and anti-oxidative effects remain unclear. In this study, we investigated in vitro the possible role of whole M. alternifolia EO as a modulator of the oxidative response, i.e. reactive oxygen species (ROS) production, of leukocytes (monocytes and polymorphonuclear neutrophils (PMNs)) in humans. METHODS: Whole blood leukocytes from healthy human volunteers (n = 7), isolated from erythrocytes by haemolytic shock, were incubated for 30 min with M. alternifolia EO (0-0.1%) to determine their ROS production by flow cytometry with or without stimulation of cells. We compared the effects of 3 different stimulating agents acting differently on transductional pathways to stimulate the ROS production: a phorbol ester (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP) and opsonised zymosan (OZ). RESULTS: As attested by the Krüskall-Wallis test, M. alternifolia EO at 0.1% directly stimulated ROS production by PMNs (x 8.7 vs. 0% EO, p < 0.05) and increased the intracellular ROS produced by monocytes. Whichever the stimulating agent used (PMA, fMLP or OZ), M. alternifolia EO decreased the intracellular ROS production at the dilution of 0.1% by PMNs and monocytes, more so with PMNs. CONCLUSION: M. alternifolia EO may be both a direct active mediator of the bactericidal action of the circulating leukocytes and may be efficient in protecting the organism from an excess of ROS, through an anti-oxidant and radical scavenging activity.  相似文献   

8.
Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.  相似文献   

9.
IL-9 is a Th2 cytokine that exerts pleiotropic activities on T cells, B cells, mast cells, hematopoietic progenitors, and lung epithelial cells, but no effect of this cytokine has been reported so far on mononuclear phagocytes. Human blood monocytes preincubated with IL-9 for 24 h before LPS or PMA stimulation exhibited a decreased oxidative burst, even in the presence of IFN-gamma. The inhibitory effect of IL-9 was specifically abolished by anti-hIL-9R mAb, and the presence of IL-9 receptors was demonstrated on human blood monocytes by FACS. IL-9 also down-regulated TNF-alpha and IL-10 release by LPS-stimulated monocytes. In addition, IL-9 strongly up-regulated the production of TGF-beta1 by LPS-stimulated monocytes. The suppressive effect of IL-9 on the respiratory burst and TNF-alpha production in LPS-stimulated monocytes was significantly inhibited by anti-TGF-beta1, but not by anti-IL-10Rbeta mAb. Furthermore, IL-9 inhibited LPS-induced activation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases in monocytes through a TGF-beta-mediated induction of protein phosphatase activity. In contrast, IL-4, which exerts a similar inhibitory effect on the oxidative burst and TNF-alpha release by monocytes, acts primarily through a down-regulation of LPS receptors. Thus, IL-9 deactivates LPS-stimulated blood mononuclear phagocytes, and the mechanism of inhibition involves the potentiation of TGF-beta1 production and extracellular signal-regulated kinase inhibition. These findings highlight a new target cell for IL-9 and may account for the beneficial activity of IL-9 in animal models of exaggerated inflammatory response.  相似文献   

10.
During the phagocytic respiratory burst, oxygen is converted to potent cytotoxic oxidants. Monocytes and macrophages are potentially long-lived, and we have hypothesized that protective mechanisms against oxidant stress are varied and fully expressed in these cells. We report here that the respiratory burst in monocytes is accompanied by an increase in the uptake of [35S]glutathione ([35S]GSH) after 20-30 min to levels up to 10-fold greater than those at baseline. By 30 min, 49% of the cell-associated radioactivity was in the cytosol, 41% was in membrane, and 10% was associated with the nuclear fraction. GSH uptake was inhibited by catalase, which removes hydrogen peroxide (H2O2), and micromolar H2O2 stimulated GSH uptake effectively in monocytes and also lymphocytes. Oxidation of GSH to glutathione disulfide with H2O2 and glutathione peroxidase prevented uptake. Acivicin, which inhibits GSH breakdown by gamma-glutamyl transpeptidase (GGT), had no effect on the enhanced uptake seen during the respiratory burst. Uptake of cysteine or cystine, possible products of GGT activity, stayed the same or decreased during the respiratory burst. These results suggest that a GGT-independent mechanism is responsible for the enhanced GSH uptake seen during the respiratory burst. We describe here a sodium-independent, methionine-inhibitable transport system with a Km (8.5 microM) for GSH approximating the plasma GSH concentration. These results suggest that monocytes have a specific GSH transporter that is triggered by the release of H2O2 during the respiratory burst and that induces the uptake of GSH into the cell. Such a mechanism has the potential to protect the phagocyte against oxidant damage.  相似文献   

11.
Heterophils are the predominant polymorphonuclear leukocytes (PMNs) in poultry. The oxidative burst of activated heterophils, which generates reactive oxygen species (ROS), is one of the first line cellular defenses against invading microorganisms. In this report, the oxidative response of heterophils from neonatal chicks to in vitro stimulation by various inflammatory agonists was investigated using a fluorescence microplate assay. Both non-opsonized formalin-killed Salmonella enteritidis and Staphylococcus aureus were able to stimulate heterophil oxidative burst. The phorbol myristate acetate (PMA) was the most potent stimulant for the chicken heterophil oxidative response, whereas, the bacterial cell surface components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) were less effective. Protein kinase C (PKC) is an essential signaling component regulating heterophil oxidative response to stimulation by PMA, LPS, LTA and S. enteritidis. However, inhibition of PKC did not affect the oxidative response to stimulation by S. aureus, suggesting differential signaling pathway responsible for the activation of oxidative burst by Gram-negative S. enteritidis and Gram-positive S. aureus. Inhibition of mitogen activated protein (MAP) kinase p38 and extracellular response kinase (ERK) by SB 203580 and PD 098059, respectively, did not inhibit activated oxidative burst.  相似文献   

12.
Meyer A  Pühler A  Niehaus K 《Planta》2001,213(2):214-222
The lipopolysaccharides (LPSXcc) of the phytopathogenic bacteria Xanthomonas campestris pv. campestris (X.c.c.) were purified from an exopolysaccharide-deficient mutant strain. The isolated LPSxcc induced an oxidative burst reaction in cell-suspension cultures of the non-host plant tobacco (Nicotiana tabacum L.) SRI. The oxidative burst elicited by LPSXcc differed from that induced by yeast elicitor (YE), a cell wall preparation of baker's yeast. The LPSXcc-induced oxidative burst was characterised by a slow increase in H2O2 production and an extended decline. Both the LPSXcc-and YE-induced oxidative bursts were completely blocked by the NAD(P)H-oxidase inhibitor diphenylene-iodonium. When LPSXcc and YE were applied in combination, a synergistic effect and the establishment of refractory states in the generation of H2O2 were observed. The amount of cytosolic calcium was measured in transgenic tobacco cell cultures carrying the apoaequorin gene by coelenterazine-derived chemiluminescence. Whereas YE induced a calcium peak within 1 min after application, LPSXcc induced a long-term calcium signal without transients. To our knowledge this is the first report on the elicitation of an oxidative burst in plant cell cultures by isolated LPS of a phytopathogenic bacterium.  相似文献   

13.
Liao XL  Lou B  Ma J  Wu MP 《Life sciences》2005,77(3):325-335
High density lipoprotein (HDL) has anti-inflammatory function. To investigate the effects of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, on activated neutrophils, we stimulated neutrophils in vitro with fMLP and PMA, as a receptor-binding and a nonreceptor-binding stimuli, respectively, and incubated ApoA-I with those neutrophils. Three conditions were utilized: 1) resting neutrophils + ApoA-I (0, 2.5,5, 10 microg/mL respectively), 2) fMLP(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively), and 3) PMA(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively). After incubation, we measured neutrophils adhesion to fibronectin, oxidative bust (O2- and H2O2 production), degranulation (release of MPO and elastase), and L929 cell mortality which were attacked by release-out of cytokines in activated neutrophils (using MTT). Our results showed that in vitro ApoA-I inhibits fMLP- and PMA- activated neutrophil adhesion, oxidative burst, degranulation and L929 cell mortality. These inhibition effects of ApoA-I on fMLP-activated neutrophils are more powerful than that on PMA-activated neutrophils. ApoA-I has no effect on resting neutrophils. We concluded that ApoA-I could diminish the function of activated neutrophils.  相似文献   

14.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

15.
Hu XY  Neill SJ  Cai WM  Tang ZC 《Cell research》2004,14(3):234-240
Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings express-ing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca^2 ]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 μg Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H202. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 μg Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca^2 ]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS,GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.  相似文献   

16.
Components of current vaccines for Hansen's disease include Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and killed Mycobacterium leprae. BCG infections in humans are rare and most often occur in immune-compromised individuals. M. leprae on the other hand, although not causing clinical disease in most exposed individuals, is capable of infecting and replicating within mononuclear phagocytes. Lymphocytes from patients with the lepromatous form of Hansen's disease exhibit defective lymphokine production when challenged in vitro with M. leprae. This may result in inefficient mononuclear phagocyte activation for oxidative killing. To study the ability of normal phagocytes to ingest and respond oxidatively to BCG and M. leprae, we measured phagocytic cell O2- release and fluorescent oxidative product formation and visually confirmed the ingestion of the organisms. BCG stimulated a vigorous O2- generation in neutrophils and monocytes and flow cytometric oxidative product generation by neutrophils occurred in the majority of cells. M. leprae, stimulated a weak but significant O2- release requiring a high concentration of organisms and long exposure. By flow cytometric analysis, most neutrophils were able to respond to both organisms with the generation of fluorescent oxidative products. Neutrophil oxidative responses to M. leprae were substantially less than responses seen from neutrophils exposed to BCG. By microscopic examination of neutrophils phagocytizing FITC-labeled bacteria, it was shown that both M. leprae and BCG were slowly ingested but that more BCG appeared to be associated with the cell membrane of more of the cells. When phagocytic cells were incubated with BCG and M. leprae for 30 min and subsequently examined by electron microscopy, few organisms were seen in either neutrophils or monocytes. This suggests that BCG are easily recognized and slowly ingested by normal phagocytic cells, the majority of which respond with a strong oxidative burst. M. leprae appeared to only weakly stimulate phagocyte oxidative responses and were also slowly phagocytized.  相似文献   

17.
Using The globally ischaemic isolated guinea-pig heart we conducted studies to assess the role of activated neutrophils (PMNs) and the role of the endothelium in reperfusion injury. Reperfusion injury was induced by a 20 min period of global ischaemia followed by a 30 min reperfusion with Krebs' buffer supplemented with f-Met-Leu-Phe (fMLP) and heparinized blood. Ischaemia alone or blood alone resulted in a complete recovery in contractile function measured by developed pressure, fMLP (500 muM) and blood, administered to normoxic hearts did not affect contractile function. The combination of 100 muM fMLP and blood beginning at reperfusion and continuing for 30 min decreased the recovery in contractile function (max. 33 +/- 6% reovery) while buffer and 100 pM fMLP resulted in a complete recovery in function. In hearts infused with buffer and neutropenic blood incubated with 100 muM fMLP a complete recovery in function was observed. Isolated peritoneal neutrophils, 7-70 x 10(5) PMN/ min, incubated with 100 muM fMLP and Krebs' solution decreased contractile function in a concentration-related manner (max. 44 +/- 11% recovery). Platelets, plasma or red blood cells alone incubated with fMLP did not decrease recovery in developed pressure. Platelets and PMN incubated with 100 muM fMLP did not, while red blood cells and PMN did, elicit a reduction in recovery in contractile function (34 +/- 4% recovery). A 20 min period of global ischaemia destroys the functional integrity of the endothelium (response to Ach). Pre-treatment of the heart with sufficient H(2)O(2) to functionally damage the endothelium, followed by infusion of Krebs' solution supplemented with blood and 100 muM fMLP also elicited a reduction in recovery of contractile function (42 +/- 15% recovery). In summary, partially activated neutrophils play a major role in reperfusion injury and there exists a cooperativity between the RBC and PMN in this model.  相似文献   

18.
A lipopolysaccharide (LPS) stimulates the synthesis and releases several metabolites from phagocytes which can lead to an endotoxic shock characterized by multiple organ injury with the earliest to occur in the lungs. Among LPS-induced metabolites, reactive oxygen species are considered to play a crucial pathogenetic role in the lung damage. In this study, the effect of early administration of an antioxidant, alpha-lipoic acid (LA), on pulmonary lipid peroxidation, lung hydrogen peroxide (H(2)O(2)) concentration, and lung sulfhydryl group content was evaluated in rats with endotoxic shock induced by administration of LPS (Escherichia coli 026:B6, 30 mg/kg, i.v.). In addition, lung edema was assessed with wet-to-dry lung weight (W/D) ratio. Animals were treated intravenously with normal saline or LA 60 mg/kg or 100 mg/kg 30 min after LPS injection. After a 5 h observation, animals were killed and the lungs were isolated for measurements. Injection of LPS alone resulted in the development of shock and oxidative stress, the latter indicated by a significant increase in the lung thiobarbituric acid reacting substances (TBARS) and H(2)O(2) concentrations, and a decrease in the lung sulfhydryl group content. The increase in the W/D ratio after the LPS challenge indicated the development of lung edema in response to LPS. Administration of LA after the LPS challenge resulted in an increase in the sulfhydryl group content and a decrease in TBARS and H202 concentration in the lungs as compared with the LPS group. An insignificant decrease in the W/D ratio was observed in rats treated with either dose of LA. These results indicate that the LPS-induced oxidative lung injury in endotoxic rats can be attenuated by early treatment with LA. Administration of LA could be a useful adjunct to conventional approach in the management of septic shock.  相似文献   

19.
Inhibition of macrophage priming by sulfatide from Mycobacterium tuberculosis   总被引:15,自引:0,他引:15  
Sulfatide from the outer surface of Mycobacterium tuberculosis blocked priming in cultured human monocytes. Monocytes were primed in vitro with either lipopolysaccharide (LPS) or interferon-gamma. Primed monocytes released increased amounts of superoxide anion (O2-) when stimulated with formyl-methionyl-leucyl-phenylalanine or with phorbol myristate acetate. Primed monocytes also showed increased phagocytosis of sheep erythrocytes and increased release of interleukin 1. When primed monocytes were treated with 10 micrograms/ml of sulfatide, these enhanced functions, characteristic of primed monocytes, returned to levels found in unprimed monocytes. (With respect to these functions and others, monocytes or macrophages primed in vitro by exposure to LPS or interferon-gamma resemble macrophages activated in vivo by infection. In vivo, activated macrophages provide non-specific resistance to infection). Inhibition of priming by sulfatide could be detected within 10 min, but maximum effect of sulfatide required 3 to 5 hr. Sulfatide had no effect on O2- release, if it was added after the cells had been stimulated by PMA, suggesting that sulfatide did not inhibit enzymes involved in formation of O2-, but rather that sulfatide inhibited priming. Increasing the amounts of LPS or interferon-gamma did not counteract the effects of sulfatide. Sulfatide did cause monocytes to release some prostaglandin E2 (less than 1 nM), but the amount was not sufficient to inhibit monocyte functions. The effect of sulfatide was not blocked by indomethacin. Other sulfated compounds and other products of mycobacteria did not produce the sulfatide effect. We conclude that M. tuberculosis has on its outer surface a chemical that directly interferes with monocyte priming. In vivo, M. tuberculosis might use sulfatide to block macrophage activation and thereby resist being killed by macrophages.  相似文献   

20.
刘曼西  刘晓  徐铭 《生物技术》2001,11(4):17-19
大丽轮枝菌(Verticilium dahliae kleb.)是引起棉花黄萎病的病原真菌。使用从大丽轮枝菌V44(高毒)和V64(低毒)的菌丝体制备的各市县导物(I44和I64)作用悬浮培养的豫棉6号(感性)和豫棉8号(耐性)细胞系,用过氧化物酶法测定诱导后30min内的反应性氧变化,发现仅有不亲和性较高的体系,即弱毒力的大丽轮枝菌(V64)和耐性的豫棉8号所组成的体系(I64-Y8)表现最高的反应性氧迸发,3min-6min时增加61.8%。使用显著低于杀菌浓度的剂量的水杨酸(SA)和H2O2作用上述大丽轮枝菌,发现水杨酸和H2O2都能影响微生物,经1mmol/L水杨酸和0.2mmol/LH2O2作用后的微生物,其所产生的诱导物对植物细胞反应性氧的诱导作用要高于未被作用的微生物的诱导物,两种化学性质的影响的共同点是使反应性氧迸发的峰值时间提前,峰值增加,水杨酸提前12min,H2O2的影响还突出表现在使反应性氧迸发的曲线锐化,即峰使时间范围的平均每分钟增加率表现显著增加,9min-12min时达到109%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号