首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lars Hederstedt 《BBA》2012,1817(6):920-927
Respiration in plants, most animals and many aerobic microbes is dependent on heme A. This is a highly specialized type of heme found as prosthetic group in cytochrome a-containing respiratory oxidases. Heme A differs structurally from heme B (protoheme IX) by the presence of a hydroxyethylfarnesyl group instead of a vinyl side group at the C2 position and a formyl group instead of a methyl side group at position C8 of the porphyrin macrocycle. Heme A synthase catalyzes the formation of the formyl side group and is a poorly understood heme-containing membrane bound atypical monooxygenase. This review presents our current understanding of heme A synthesis at the molecular level in mitochondria and aerobic bacteria. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
Heme A, as a prosthetic group, is found exclusively in respiratory oxidases of mitochondria and aerobic bacteria. Bacillus subtilis CtaA and other heme A synthases catalyze the conversion of a methyl side group on heme O into a formyl group. The catalytic mechanism of heme A synthase is not understood, and little is known about the composition and structure of the enzyme. In this work, we have: (i) constructed a ctaA deletion mutant and a system for overproduction of mutant variants of the CtaA protein in B. subtilis, (ii) developed anaffinity purification procedure for isolation of preparative amounts of CtaA, and (iii) investigated the functional roles of four invariant histidine residues in heme A synthase by in vivo and in vitro analyses of the properties of mutant variants of CtaA. Our results show an important function of three histidine residues for heme A synthase activity. Several of the purified mutant enzyme proteins contained tightly bound heme O. One variant also contained trapped hydroxylated heme O, which is a postulated enzyme reaction intermediate. The findings indicate functional roles for the invariant histidine residues and provide strong evidence that the heme A synthase enzyme reaction includes two consecutive monooxygenations.  相似文献   

3.
Heme A is a prosthetic group of all eukaryotic and some prokaryotic cytochrome oxidases. This heme differs from heme B (protoheme) at two carbon positions of the porphyrin ring. The synthesis of heme A begins with farnesylation of the vinyl group at carbon C-2 of heme B. The heme O product of this reaction is then converted to heme A by a further oxidation of a methyl to a formyl group on C-8. In a previous study (Barros, M. H., Carlson, C. G., Glerum, D. M., and Tzagoloff, A. (2001) FEBS Lett. 492, 133-138) we proposed that the formyl group is formed by an initial hydroxylation of the C-8 methyl by a three-component monooxygenase consisting of Cox15p, ferredoxin, and ferredoxin reductase. In the present study three lines of evidence confirm a requirement of ferredoxin in heme A synthesis. 1) Temperature-conditional yah1 mutants grown under restrictive conditions display a decrease in heme A relative to heme B. 2) The incorporation of radioactive delta-aminolevulinic acid into heme A is reduced in yah1 ts but not in the wild type after the shift to the restrictive temperature; and 3) the overexpression of Cox15p in cytochrome oxidase mutants that accumulate heme O leads to an increased mitochondrial concentration of heme A. The increase in heme A is greater in mutants that overexpress Cox15p and ferredoxin. These results are consistent with a requirement of ferredoxin and indirectly of ferredoxin reductase in hydroxylation of heme O.  相似文献   

4.
Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.  相似文献   

5.
Brown KR  Allan BM  Do P  Hegg EL 《Biochemistry》2002,41(36):10906-10913
Heme A, an obligatory cofactor in eukaryotic cytochrome c oxidase, is produced from heme B (protoheme) via two enzymatic reactions catalyzed by heme O synthase and heme A synthase. Heme O synthase is responsible for the addition of a farnesyl moiety, while heme A synthase catalyzes the oxidation of a methyl substituent to an aldehyde. We have cloned the heme O synthase and heme A synthase genes from Bacillus subtilis (ctaB and ctaA) and overexpressed them in Escherichia coli to probe the oxidative mechanism of heme A synthase. Because E. coli does not naturally produce or utilize heme A, this strategy effectively decoupled heme A biosynthesis from the native electron transfer pathway and heme A transport, allowing us to observe two previously unidentified hemes. We utilized HPLC, UV/visible spectroscopy, and tandem mass spectrometry to identify these novel hemes as derivatives of heme O containing an alcohol or a carboxylate moiety at position C8 on pyrrole ring D. We interpret these derivatives to be the putative alcohol intermediate and an overoxidized byproduct of heme A synthase. Because we have shown that all hemes produced by heme A synthase require O(2) for their synthesis, we propose that heme A synthase catalyzes the oxidation of the C8 methyl to an aldehyde group via two discrete monooxygenase reactions.  相似文献   

6.
Brown KR  Brown BM  Hoagland E  Mayne CL  Hegg EL 《Biochemistry》2004,43(27):8616-8624
Heme A is an obligatory cofactor in all eukaryotic and many prokaryotic cytochrome c oxidases. The final step in heme A biosynthesis requires the oxidation of the C8 methyl substituent on pyrrole ring D to an aldehyde, a reaction catalyzed by heme A synthase. To effect this transformation, heme A synthase is proposed to utilize a heme B cofactor, oxidizing the substrate via successive monooxygenase reactions. Consistent with this hypothesis, the activity of heme A synthase is found to be strictly dependent on molecular oxygen. Surprisingly, when cells expressing heme A synthase were incubated with (18)O(2), no significant incorporation of label was observed in heme A, the C8 alcohol intermediate, or the C8 overoxidized byproduct. Conversely, when the cells were grown in H(2)(18)O, partial labeling was observed at every heme oxygen position. These results suggest that the oxygen on the heme A aldehyde is derived from water. Although our data do not allow us to exclude the possibility of exchange with water inside of the cell, the results seem to question a mechanism utilizing successive monooxygenase reactions and support instead a mechanism of heme O oxidation via electron transfer.  相似文献   

7.
Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to biliverdin by utilizing O(2) and NADPH. HO (apoHO) was crystallized as twinned P3(2) with three molecules per asymmetric unit, and its crystal structure was determined at 2.55 A resolution. Structural comparison of apoHO and its complex with heme (HO-heme) showed three distinct differences. First, the A helix of the eight alpha-helices (A-H) in HO-heme, which includes the proximal ligand of heme (His25), is invisible in apoHO. In addition, the B helix, a portion of which builds the heme pocket, is shifted toward the heme pocket in apoHO. Second, Gln38 is shifted toward the position where the alpha-meso carbon of heme is located in HO-heme. Nepsilon of Gln38 is hydrogen-bonded to the carbonyl group of Glu29 located at the C-terminal side of the A helix in HO-heme, indicative that this hydrogen bond restrains the angle between the A and B helices in HO-heme. Third, the amide group of Gly143 in the F helix is directed outward from the heme pocket in apoHO, whereas it is directed toward the distal ligand of heme in HO-heme. This means that the F helix around Gly143 must change its conformation to accommodate heme binding. The apoHO structure has the characteristic that the helix on one side of the heme pocket fluctuates, whereas the rest of the structure is similar to that of HO-heme, as observed in such hemoproteins as myoglobin and cytochromes b(5) and b(562). These structural features of apoHO suggest that the orientation of the proximal helix and the position of His25 are fixed upon heme binding.  相似文献   

8.
As the final electron acceptor in the respiratory chain of eukaryotic and many prokaryotic organisms, cytochrome c oxidase catalyzes the reduction of oxygen to water, concomitantly generating a proton gradient. X-ray structures of two cytochrome c oxidases have been reported, and in each structure three possible pathways for proton translocation are indicated: the D-, K-, and H-channels. The putative H-channel is most clearly delineated in the bovine heart oxidase and has been proposed to be functionally important for the translocation of pumped protons in the mammalian oxidase [Yoshikawa et al. (1998) Science 280, 1723-1729]. In the present work, the functional importance of residues lining the putative H-channel in the oxidase from Rhodobacter sphaeroides are examined by site-directed mutagenesis. Mutants were generated in eight different sites and the enzymes have been purified and characterized. The results suggest that the H-channel is not functionally important in the prokaryotic oxidase, in agreement with the conclusion from previous work with the oxidase from Paracoccus denitrificans [Pfitzner et al. (1998) J. Biomembr. Bioenerg. 30, 89-93]. Each of the mutants in R. sphaeroides, with an exception at only one position, is enzymatically active and pumps protons in reconstituted proteoliposomes. This includes H456A, where in the P. denitrificans oxidase a leucine residue substituted for the corresponding residue resulted in inactive enzyme. The only mutations that result in completely inactive enzyme in the set examined in the R. sphaeroides oxidase are in R52, a residue that, along with Q471, appears to be hydrogen-bonded to the formyl group of heme a in the X-ray structures. To characterize the interactions between this residue and the heme group, resonance Raman spectra of the R52 mutants were obtained. The frequency of the heme a formyl stretching mode in the R52A mutant is characteristic of that seen in non-hydrogen-bonded model heme a complexes. Thus the data confirm the presence of hydrogen bonding between the heme a formyl group and the R52 side chain, as suggested from crystallographic data. In the R52K mutant, this hydrogen bonding is maintained by the lysine residue, and this mutant enzyme retains near wild-type activity. The heme a formyl frequency is also affected by mutation of Q471, confirming the X-ray models that show this residue also has hydrogen-bonding interactions with the formyl group. Unlike R52, however, Q471 does not appear to be critical for the enzyme function.  相似文献   

9.
10.
Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 A resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a beta-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the alpha-meso carbon position where O(2) is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.  相似文献   

11.
Resonance Raman spectra have been recorded for heme a derivatives in which the oxygen atom of the formyl group has been isotopically labeled and for Schiff base derivatives of heme a in which the Schiff base nitrogen has been isotopically labeled. The 14N-15N isotope shift in the C = N stretching mode of the Schiff base is close to the theoretically predicted shift for an isolated C = N group for both the ferric and ferrous oxidation states and in both aqueous and nonaqueous solutions. In contrast, the 16O-18O isotope shift of the C = O stretching mode of the formyl group is significantly smaller than that predicted for an isolated C = O group and is also dependent on whether the environment is aqueous or nonaqueous. This differences between the theoretically predicted shifts and the observed shifts are attributed to coupling of the C = O stretching mode to as yet unidentified modes of the heme. The complex behavior of the C = O stretching vibration precludes the possibility of making simple interpretations of frequency shifts of this mode in cytochrome c oxidase.  相似文献   

12.
Cytochrome o of Escherichia coli is able to incorporate two different structures of heme, either heme B (protoheme) or heme O, in its low-spin heme site. In contrast, the heme of the binuclear O2 reduction site is invariably heme O. Heme O is a newly discovered heme that is related to heme A, but with the formyl group of the latter replaced by methyl. Enzyme isolated from wild type E. coli has predominantly heme B in the low-spin site, whereas enzyme isolated from various overexpressing strains contains both types of enzyme in different proportions. In some strains, 70% of the enzyme has heme O in the low-spin site. Despite this variation in the structure of one of the prosthetic groups, the enzymatic activity and polypeptide composition of the enzyme remain virtually constant. EPR and activity data both indicate that heme B and heme O occupy the same low-spin heme site in the enzyme. With heme O in this site, the alpha-absorption band is narrower and further to the blue, and the Em,7 is lower, than when there is heme B in the site. In contrast to previous proposals, we show here that the enzyme does not exhibit significant spectral interactions between the hemes. The structural heterogeneity of the low-spin heme accounts for the variation in the optical spectra and redox properties of the enzyme as isolated from different strains of E. coli.  相似文献   

13.
Heme A is a prosthetic group of many respiratory oxidases. It is synthesized from protoheme IX (heme B) seemingly with heme O as a stable intermediate. The Bacillus subtilis ctaA and ctaB genes are required for heme A and heme O synthesis, respectively (B. Svensson, M. Lübben, and L. Hederstedt, Mol. Microbiol. 10:193-201, 1993). Tentatively, CtaA is involved in the monooxygenation and oxidation of the methyl side group on porphyrin ring D in heme A synthesis from heme B. B. subtilis ctaA and ctaB on plasmids in both B. subtilis and Escherichia coli were found to result in a novel membrane-bound heme-containing protein with the characteristics of a low-spin b-type cytochrome. It can be reduced via the respiratory chain, and in the reduced state it shows light absorption maxima at 428, 528, and 558 nm and the alpha-band is split. Purified cytochrome isolated from both B. subtilis and E. coli membranes contained one polypeptide identified as CtaA by amino acid sequence analysis, about 0.2 mol of heme B per mol of polypeptide, and small amounts of heme A.  相似文献   

14.
The optical spectrum of heme a is red-shifted in aa(3)-type cytochrome c oxidases compared to isolated low-spin heme A model compounds. Early spectroscopic studies indicated that this may be due to hydrogen-bonding of the formyl group of heme a to an amino acid in the close vicinity. Here we show that most of the optical spectral shift of native heme a is due to a hydrogen-bonding interaction between the formyl group and arginine-54 in subunit I of cytochrome aa(3) from Paracoccus denitrificans, and that a smaller part is due to an electrostatic interaction between the D ring propionate of heme a and arginine-474.  相似文献   

15.
R A Copeland  T G Spiro 《FEBS letters》1986,197(1-2):239-243
When cytochrome-c oxidase is soaked in D2O, downshifts of the cytochrome a formyl C = O stretching mode are seen in the resonance Raman (RR) spectra (413.1 nm excitation) of both the resting and reduced forms. Other changes observed in the reduced protein RR spectra are consistent with involvement of the cytochrome a formyl group in the deuterium effect. The D2O-induced RR changes are fully developed during 3-5 days incubation, but are incomplete after 1 h. Extraction of the heme a chromophore in deuterated solvents eliminates these changes, implying that the exchangeable proton is on a protein group in the cytochrome a pocket which H-bonds to the heme formyl. The rate of the D2O exchange process is unaffected by enzyme turnover, thus reducing the likelihood that the cytochrome a formyl H-bond is directly involved in the redox-linked mechanism of proton pumping.  相似文献   

16.
Heme oxygenases convert heme to free iron, CO, and biliverdin. Saccharomyces cerevisiae and Candida albicans express putative heme oxygenases that are required for the acquisition of iron from heme, a critical process for fungal survival and virulence. The putative heme oxygenases Hmx1 and CaHmx1 from S. cerevisiae and C. albicans, respectively, minus the sequences coding for C-terminal membrane-binding domains, have been expressed in Escherichia coli. The C-terminal His-tagged, truncated enzymes are obtained as soluble, active proteins. Purified ferric Hmx1 and CaHmx1 have Soret absorption maxima at 404 and 410 nm, respectively. The apparent heme binding Kd values for Hmx1 and CaHmx1 are 0.34 +/- 0.09 microM and 1.0 +/- 0.2 microM, respectively. The resonance Raman spectra of Hmx1 reveal a heme binding pocket similar to those of the mammalian and bacterial heme oxygenases. Several reductants, including ascorbate, yeast cytochrome P450 reductase (CPR), human CPR, spinach ferredoxin/ferredoxin reductase, and putidaredoxin/putidaredoxin reductase, are able to provide electrons for biliverdin production by Hmx1 and CaHmx1. Of these, ascorbate is the most effective reducing partner. Heme oxidation by Hmx1 and CaHmx1 regiospecifically produces biliverdin IXalpha. Spectroscopic analysis of aerobic reactions with H2O2 identifies verdoheme as a reaction intermediate. Hmx1 and CaHmx1 are the first fungal heme oxygenases to be heterologously overexpressed and characterized. Their heme degradation activity is consistent with a role in iron acquisition.  相似文献   

17.
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.  相似文献   

18.
Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme—a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 µM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA–mediated interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.  相似文献   

19.
Heme oxygenase (HO) catalyzes physiological heme degradation consisting of three sequential oxidation steps that use dioxygen molecules and reducing equivalents. We determined the crystal structure of rat HO-1 in complex with heme and azide (HO-heme-N(3)(-)) at 1.9-A resolution. The azide, whose terminal nitrogen atom is coordinated to the ferric heme iron, is situated nearly parallel to the heme plane, and its other end is directed toward the alpha-meso position of the heme. Based on resonance Raman spectroscopic analysis of HO-heme bound to dioxygen, this parallel coordination mode suggests that the azide is an analog of dioxygen. The azide is surrounded by residues of the distal F-helix with only the direction to the alpha-meso carbon being open. This indicates that regiospecific oxygenation of the heme is primarily caused by the steric constraint between the dioxygen bound to heme and the F-helix. The azide interacts with Asp-140, Arg-136, and Thr-135 through a hydrogen bond network involving five water molecules on the distal side of the heme. This network, also present in HO-heme, may function in dioxygen activation in the first hydroxylation step. From the orientation of azide in HO-heme-N(3)(-), the dioxygen or hydroperoxide bound to HO-heme, the active oxygen species of the first reaction, is inferred to have a similar orientation suitable for a direct attack on the alpha-meso carbon.  相似文献   

20.
In this study, we report experimental results that provide the first complete challenge of a proposed model for heme acquisition by Staphylococcus aureus via the Isd pathway first put forth by Mazmanian, S. K., Skaar, E. P., Gaspar, A. H., Humayun, M., Gornicki, P., Jelenska, J., Joachmiak, A., Missiakas, D. M., and Schneewind, O. (2003) Science 299, 906-909. The heme-binding NEAT domains of Isd proteins IsdA, IsdB (domain 2), IsdC, and HarA/IsdH (domain 3), and the heme-binding IsdE protein, were overexpressed and purified in apo (heme-free) form. Absorption and magnetic circular dichroism spectral data, together with electrospray ionization mass spectrometry were used to unambiguously identify that heme transfers from NEAT-A through NEAT-C to IsdE. Heme transfer was demonstrated to occur in a unidirectional fashion in the sequence NEAT-B2 --> NEAT-A --> NEAT-C --> IsdE or, alternatively, initiating from NEAT-H3 instead of NEAT-B2: NEAT-H3 --> NEAT-A --> NEAT-C --> IsdE. Under the conditions of our experiments, only NEAT-H3 and NEAT-B2 could transfer bidirectionally, which is in the reverse direction as well, and only with each other. Whereas apo-IsdE readily accepted heme from holo-NEAT-C, it would not accept heme from holo-NEAT-A. Heme transfer to IsdE requires the presence of holo-NEAT-C, in agreement with the proposal that IsdC serves as the central conduit of the heme transfer pathway. These experimental findings corroborate the heme transfer model first proposed by the Schneewind group. Our data show that heme transport from the wall-anchored IsdH/IsdB proteins proceeds directly to IsdE at the membrane and, for this to occur, we propose that specific protein-protein interactions must take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号