首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor receptor-associated factor 2 (TRAF2) for signal transduction of the cell death receptor is well established. However, the role of TRAF2 in spinal cord injury (SCI) remains unclear. In this study, we detected the dynamic change patterns of TRAF2 expression using an acute spinal cord contusion (SCC) model in adult rats. Western blot analysis and immunohistochemistry identified significant upregulation of TRAF2 after SCI. Double-immunofluorescent staining demonstrated that the upregulated TRAF2 was found predominantly in neurons. Moreover, colocalization of TRAF2 with active caspase-3/-8 was detected in NeuN-positive cells. In vitro, we analyzed the association of TRAF2 with active caspase-3/8 on PC12 cells by western blot analysis, which paralleled the in vivo data. Knockdown ofTRAF2 with siRNA demonstrated its probable anti-apoptotic role in the process of neuronal apoptosis after SCI. To summarize, we have revealed for the first time the temporal and spatial expression profile of TRAF2 in SCI. Our data suggest that upregulation of TRAF2 triggered by trauma plays an important role in suppressing neuronal apoptosis after SCI.  相似文献   

2.
3.
4.
TNF receptor associated factor 3 (TRAF3), a member of the TRAF family of intracellular signaling proteins, can directly influence the phosphorylation status and activation of c-Jun N-terminal kinase, participating in CD40-induced apoptosis in carcinoma. However, its expression profile and function are still unclear in spinal cord injury (SCI). In this study, we performed an acute spinal cord contusion injury model in adult rats and detected the dynamic change patterns of TRAF3 expression in spinal cord. Western blot and immunohistochemistry revealed a striking upregulation of TRAF3 after SCI. Double immunofluorescence staining prompted that TRAF3 immunoreactivity was found in neurons rather than astrocytes. Moreover, co-localization of TRAF3/active caspase-3 was detected in neuronal nuclei. To further investigate the function of TRAF3, a neuronal cell line PC12 was employed to establish an apoptosis model in vitro. We analyzed the association of TRAF3 with active caspase-3 on PC12 cells by western blot and immunofluorescent labeling, which was parallel with the data in vivo. Additionally, knocking TRAF3 down with siRNA demonstrated the probable pro-apoptotic role of TRAF3 in the process of neuronal apoptosis. To summarize, we firstly uncover the temporal and spatial expression changes of TRAF3 in SCI. Our data suggest that TRAF3 might be implicated in central nervous system pathophysiology after SCI.  相似文献   

5.
6.
FK-506 (Tacrolimus) is a very commonly used immunomodulatory agent that plays important roles in modulating the calcium-dependent phosphoserine–phosphothreonine protein phosphatase calcineurin and thus inhibits calcineurin-mediated secondary neuronal damage. The biological function of FK-506 in the spinal cord has not been fully elucidated. To clarify the anti-inflammatory action of FK-506 in spinal cord injury (SCI), we performed an acute spinal cord contusion injury model in adult rats and hypoxia-treated primary spinal cord microglia cultures. This work studied the activation of NF-κB and proinflammatory cytokine (TNF-a, IL-1b, and IL-6) expression. ELISA and q-PCR analysis revealed that TNF-a, IL-1b, and IL-6 levels significantly increased 3 days after spinal cord contusion and decreased after 14 days, accompanied by the increased activation of NF-κB. This increase was reversed by an FK-506 treatment. Double immunofluorescence labeling suggested that NF-κB activation was especially prominent in microglia. Immunohistochemistry confirmed no alteration in the number of microglia. Moreover, the results in hypoxia-treated primary spinal cord microglia confirmed the effect of FK-506 on TNF-a, IL-1b, and IL-6 expression and NF-κB activation. These findings suggest that FK-506 may be involved in microglial activation after SCI.  相似文献   

7.
LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, its expression and function in central nervous system still unclear. In this study, we performed an acute spinal cord contusion injury (SCI) model in adult rats and investigated the dynamic changes of LIN28 expression in spinal cord. Western blot and immunohistochemistry analysis revealed that LIN28 was present in normal spinal cord. It gradually increased, reached a peak at 3 day, and then nearly declined to the basal level at 14 days after SCI. Double immunofluorescence staining showed that LIN28 immunoreactivity was found in neurons, astrocytes and a handful of microglia. Interestingly, LIN28 expression was increased predominantly in astrocytes but not in neurons. Moreover, the colocalization of LIN28 and proliferating cell nuclear antigen was detected after injury. Western blot showed that LIN28 participated in lipopolysaccharide (LPS) induced astrocytes inflammatory responses by NF-κB signaling pathway. These results suggested that LIN28 may be involved in the pathologic process of SCI, and further research is needed to have a good understanding of its function and mechanism.  相似文献   

8.
Spinal cord injury frequently results in permanent loss of neurological function. It includes many complex molecular and biochemical mechanisms. G-protein-coupled receptor kinase 6 (GRK6) is an intracellular kinase that regulates the sensitivity of certain G-protein-coupled receptors. Some studies reported GRK2 and GRK5 modulate the NFκB pathway in macrophages. Additionally, GRK2 is referred to as regulating activation of spinal cord microglia and GRK6 expression is significantly elevated in most brain regions in the MPTP-lesioned parkinsonian monkeys. However, the expression and function of GRK6 in nervous system lesion and repair are not well understood. In this study, we performed an acute spinal cord injury (SCI) model in adult rats. Western blot analysis showed the expression of GRK6 was upregulated significantly at protein level in spinal cord after SCI. Immunohistochemistry and immunofluorescence revealed wide expression of GRK6 in the normal spinal cord. After injury, GRK6 expression was increased predominantly in microglia, which expressed F4/80 (marker of macrophages and activated microglia) strongly. To understand whether GRK6 played a role in microglia activation, we applied lipopolysaccharide (LPS) to induce microglia activation in vitro. Western blot analysis demonstrated up-regulation in GRK6 protein expression after LPS stimulation was time- and dose-dependent and that up-regulation in F4/80 expression was concomitant with GRK6. These data suggested that GRK6 might be involved in the pathophysiology of SCI.  相似文献   

9.
10.
At present, the effect of ganglioside combined with Jiaji electroacupuncture (Jiaji EA) on SCI still remains unclear. This study explores the effect of ganglioside combined with electroacupuncture on Nogo/NgR signal pathway in spinal cord tissue of spinal cord injury (SCI) rats. Basso Beattie Bresnahan (BBB) score was used to evaluate spinal cord function after modeling and 14 days post ganglioside and electroacupuncture treatment. RT-qPCR and western blot were performed to evaluate the expression levels of targets in spinal cord tissue. After 14 days of treatment, the BBB scores of Jiaji EA group, ganglioside group and combination group were all improved. The expression levels of IL-1β, IL-6 and TNF-α in Jiaji EA group, ganglioside group and combination group were significantly lower than those in model group. Both of mRNA and protein expression levels of Nogo-A, NgR and LINGO-1 in the model group were significantly higher than those in the Jiaji EA group, ganglioside group and combination group. Ganglioside combined with Jiaji EA has a stronger effect on promoting the recovery of nerve function. Its mechanism of action may be related to its inhibition of the expression of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α and Nogo-NgR signal pathway to promote neuronal growth. Our results will provide fundamental information for further SCI studies.  相似文献   

11.
Xiao F  Fei M  Cheng C  Ji Y  Sun L  Qin J  Yang J  Liu Y  Zhang L  Xia Y  Shen A 《Neurochemical research》2008,33(9):1735-1748
Src suppressed C kinase substrate (SSeCKS) was identified as a PKC substrate/PKC-binding protein, which plays a role in mitogenic regulatory activity and has a function in the control of cell signaling and cytoskeletal arrangement. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the mRNA and protein expression and cellular localization of SSeCKS during spinal cord injury (SCI). Real-time PCR and Western blot analysis revealed that SSeCKS was present in normal whole spinal cord. It gradually increased, reached a peak at 3 days for its mRNA level and 5 days for its protein level after SCI, and then declined during the following days. In ventral horn, the expression of SSeCKS underwent a temporal pattern that was similar with the whole spinal cord in both mRNA and protein level. However, in dorsal horn, the mRNA and protein for SSeCKS expression were significantly increased at 1 day for its mRNA level and 3 days for its protein level, and then gradually declined to the baseline level, ultimately up-regulated again from 7 to 14 days. The protein expression of SSeCKS was further analysed by immunohistochemistry. The positively stained areas for SSeCKS changed with the similar pattern to that of protein expression detected by immunoblotting analysis. Double immunofluorescence staining showed that SSeCKS immunoreactivity (IR) was found in neurons, astrocytes, oligodendrocytes of spinal cord tissues within 5 mm from the lesion site. Importantly, injury-induced expression of SSeCKS was co-labeled by active caspase-3 (apoptotic marker), Tau-1 (the marker for pathological oligodendrocyte) and β-1,4-galactosyltransferase 1 (GalT). All the results suggested that SSeCKS might play important roles in spinal cord pathophysiology and further research is needed to have a good understanding of its function and mechanism. Feng Xiao and Min Fei contributed equally to this work.  相似文献   

12.
Treatment for spinal cord injury (SCI) remains a challenge worldwide, and inflammation is a major cause of secondary injury after SCI. Peripheral macrophages (PMs) have been verified as a key factor that exert anti-inflammatory effects after SCI, but the mechanism is unidentified. As local macrophages, microglia also exert significant effects after SCI, especially polarization. Exosomes show source cell-like biological functions to target cells and have been the subject of much research in recent years. Thus, we hypothesized the PM-derived exosomes (PM-Exos) play an important role in signal transmission with local microglia and can be used therapeutic agents for SCI in a series of in vivo and in vitro studies. For the in vivo experiment, three groups of Sprague-Dawley (SD) rats subjected to spinal cord contusion injury were injected with 200 µg/ml PM-Exos, 20 µg/ml PM-Exos or PBS via the tail vein. Recovery of the rats and of spinal cord function were observed. In vitro, we investigated the potential anti-inflammatory mechanism of PM-Exos and evaluated microglial autophagy, anti-inflammatory type microglia polarization and the upstream signaling pathway. The results showed that spinal cord function and recovery were better in the PM-Exo groups than the control group. In the in vitro study, microglial autophagy levels and the expression of anti-inflammatory type microglia were higher in the experimental groups than the control group. Moreover, the expression of proteins related to the PI3K/AKT/mTOR autophagic signaling pathway was suppressed in the PM-Exo groups. PM-Exos have a beneficial effect in SCI, and activation of microglial autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhancing the polarization of anti-inflammatory type microglia, that may play a major role in the anti-inflammatory process.  相似文献   

13.
RNA-binding motif protein 3 (RBM3) belongs to a very small group of cold inducible proteins with anti-apoptotic and proliferative functions. To elucidate the expression and possible function of RBM3 in central nervous system (CNS) lesion and repair, we performed a spinal cord injury (SCI) model in adult rats. Western blot analysis revealed that RBM3 level significantly increased at 1 day after damage, and then declined during the following days. Immunohistochemistry further confirmed that RBM3 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased at 1 day after SCI. Besides, double immunofluorescence staining showed RBM3 was primarily expressed in the neurons and a few of astrocytes in the normal group. While after injury, the expression of RBM3 increased both in neurons and astrocytes at 1 day. We also examined the expression profiles of proliferating cell nuclear antigen (PCNA) and active caspase-3 in injured spinal cords by western blot. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many RBM3-expressing cells and rare caspase-3 was observed in RBM3-expressing cells at 1 day after injury. Our data suggested that RBM3 might play important roles in CNS pathophysiology after SCI.  相似文献   

14.
《Free radical research》2013,47(8):929-939
Abstract

Reactive oxygen species (ROS) and the NADPH oxidase (NOX) enzyme are both up-regulated after spinal cord injury (SCI) and play significant roles in promoting post-injury inflammation. However, the cellular and temporal expression profile of NOX isotypes, including NOX2, 3, and 4, after SCI is currently unclear. The purpose of this study was to resolve this expression profile and examine the effect of inhibition of NOX on inflammation after SCI. Briefly, adult male rats were subjected to moderate contusion SCI. Double immunofluorescence for NOX isotypes and CNS cellular types was performed at 24 h, 7 days, and 28 days post-injury. NOX isotypes were found to be expressed in neurons, astrocytes, and microglia, and this expression was dependent on injury status. NOX2 and 4 were found in all cell types assessed, while NOX3 was positively identified in neurons only. NOX2 was the most responsive to injury, increasing in both microglia and astrocytes. The biggest increases in expression were observed at 7 days post-injury and increased expression was maintained through 28 days. NOX2 inhibition by systemic administration of gp91ds-tat at 15 min, 6 h or 7 days after injury reduced both pro-inflammatory cytokine expression and evidence of oxidative stress in the injured spinal cord. This study therefore illustrates the regional and temporal influence on NOX isotype expression and the importance of NOX activation in SCI. This information will be useful in future studies of understanding ROS production after injury and therapeutic potentials.  相似文献   

15.
Failure of axon regeneration after traumatic spinal cord injury (SCI) is attributable in part to the presence of inhibitory molecular interactions. Recent evidence demonstrates that activation of Eph signaling pathways leads to modulation of growth cone dynamics and repulsion through the activation of ephexin, a novel guanine nucleotide exchange factor (GEF). However, little is known about the expression and modulation of Eph molecular targets in the injured spinal cord. In this study, we determined the expression profile of ephexin after a moderate spinal cord contusion at thoracic level (T10) in young adult rats. Western-blot studies showed increased protein expression in injured rats at 4 and 7 days postinjury (DPI) when compared with control animals. The protein levels returned to normal at 14 DPI and remained steady until 28 DPI. However, immunoprecipitation studies of the phosphorylated ephexin demonstrated that this protein is activated by day 2 until 14 DPI. Expression of ephexin was noticeable in neurons, axons, microglia/macrophages, and reactive astrocytes, and co-localized with EphA3, A4, and A7. These results demonstrate the presence of ephexin in the adult spinal cord and its activation after SCI. Therefore, we show, for the first time, the spatiotemporal pattern of ephexin expression and activation after contusive SCI. Collectively, our data support our previous findings on the putative nonpermissive roles of Eph receptors after SCI and the possible involvement of ephexin in the intracellular cascade of events.  相似文献   

16.
Previous studies indicated that nitric oxide (NO) is involved in secondary damage of spinal cord injury (SCI), which worsens the primary physical injury to the central nervous systems. Recently, nitric oxide synthase interacting protein (NOSIP) has been identified to interact with neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase by inhibiting the NO production. However, its expression and function after a central nervous system injury remains unclear. In this study, we examined the expression and cellular localization of NOSIP in the spinal cord of an adult rat. Western blot analysis indicated that NOSIP protein levels increased at day1 post-injury and peaked at day 14. Double immunofluorescence staining showed that NOSIP was primarily expressed in neurons and glial cells in the intact spinal cord. Interestingly, this study also showed that the expression of NOSIP significantly increased in astrocytes after injury. Furthermore, injury-induced expression of NOSIP was co-expressed with proliferating cell nuclear antigen (PCNA) positive astrocytes after injury. We also showed the NOSIP was co-localized with nNOS in gray matter and white matter after SCI. All these data taken together suggested that NOSIP may play an important roles in astrogliogenesis after a spinal cord injury.  相似文献   

17.
18.
19.
20.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号