首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hopanoids and sterols are members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms. They are biochemically synthesized from linear precursors (squalene, 2,3-oxidosqualene) in only one enzymatic step that is catalyzed by squalene-hopene cyclase (SHC) or oxidosqualene cyclase (OSC). SHCs and OSCs are related in amino acid sequences and probably are derived from a common ancestor. The SHC reaction requires the formation of five ring structures, 13 covalent bonds, and nine stereo centers and therefore is one of the most complex one-step enzymatic reactions. We summarize the knowledge of the properties of triterpene cyclases and details of the reaction mechanism of Alicyclobacillus acidocaldarius SHC. Properties of other SHCs are included.  相似文献   

2.
Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species ( Stigmatella , Gemmata and Methylococcus ) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi.  相似文献   

3.
Triterpenoid saponins are the class of secondary metabolites, synthesized via isoprenoid pathway. Oxidosqualene cyclases (OSCs) catalyzes the cyclization of 2, 3-oxidosqualene to various triterpene skeletons, the first committed step in triterpenoid biosynthesis. A full-length oxidosqualene cyclase cDNA from Bacopa monniera (BmOSC) was isolated and characterized. The open reading frame (ORF) of BmOSC consists of 2,292 bp, encoding 764 amino acid residues with an apparent molecular mass of 87.62 kDa and theoretical pI 6.21. It contained four QxxxxxW motifs, one Asp-Cys-Thr-Ala-Glu (DCTAE) motif which is highly conserved among the triterpene synthases and another MWCYCR motif involved in the formation of triterpenoid skeletons. The deduced amino acid sequence of BmOSC shares 80.5 % & 71.8 % identity and 89.7 % & 83.5 % similarity with Olea europaea mixed amyrin synthase and Panax notoginseng dammarenediol synthase respectively. Phylogenetic analysis revealed that BmOSC is closely related with other plant OSCs. Quantitative real-time PCR (qRT-PCR) data showed that BmOSC is expressed in all tissues examined with higher expression in stem and leaves as compared to roots and floral parts.  相似文献   

4.
植物体中环氧角鲨烯环化酶催化2,3-环氧角鲨烯形成一系列三萜烯,为甾醇和三萜化合物的生物合成提供前体。这一催化反应被认为是甾醇和三萜化合物生物合成分支形成的关键位点.综述了甾醇和三萜化合物生物合成中的关键酶——环氧角鲨烯环化酶(OSCs)家族的生物学功能,基因克隆与属性,酶的细胞定位与酶活的表达调控等分子生物学研究进展.  相似文献   

5.
The biosynthesis of cyclic monoterpenes (C(10)) generally requires the cyclization of an activated linear precursor (geranyldiphosphate) by specific terpene cyclases. Cyclic triterpenes (C(30)), on the other hand, originate from the linear precursor squalene by the action of squalene-hopene cyclases (SHCs) or oxidosqualene cyclases (OSCs). Here, we report a novel terpene cyclase from Zymomonas mobilis (ZMO1548-Shc) with the unique capability to cyclize citronellal to isopulegol. To our knowledge, ZMO1548-Shc is the first biocatalyst with diphosphate-independent monoterpenoid cyclase activity. A combinatorial approach using site-directed mutagenesis and modeling of the active site with a bound substrate revealed that the cyclization of citronellal proceeds via a different mechanism than that of the cyclization of squalene.  相似文献   

6.
三萜类化合物是植物代谢产物中最具多样性的化合物之一,具有广泛的生理活性和重要的经济价值.环氧角鲨烯环化酶(oxidosqualene cyclases,OSCs)催化2,3-氧化鲨烯环化生成不同类型的甾醇和植物三萜化合物,对天然产物的结构多样性具有重要意义.然而,目前对于OSCs酶催化2,3-氧化鲨烯发生环化多样性的机...  相似文献   

7.
8.
Triterpene skeletons are produced by oxidosqualene cyclases (OSCs). The genome sequencing of Arabidopsis thaliana revealed the presence of thirteen OSC homologous genes including At1g78950, which has been revised recently as two independent ORFs, namely At1g78950 and At1g78955. The cDNA corresponding to the revised At1g78950 was obtained by RT-PCR, ligated into Saccharomyces cerevisiae expression vector pYES2, and expressed in a lanosterol synthase deficient S. cerevisiae strain. LC-MS and NMR analyses of the accumulated product in the host cells showed that the product of At1g78950 is β-amyrin, indicating that At1g78950 encodes a β-amyrin synthase (EC 5.4.99.-).  相似文献   

9.
Adenylyl cyclases, the enzymes which catalyze the formation of the second messenger cAMP, are presently known to exist in yeast and related fungi, the amoeba Dictyostelium discoideum, flagellates, plasmodium, and infusoria. However, their structure-functional organization and molecular mechanisms of regulation differ considerably. Thus, in flagellates, tens of structurally similar adenylyl cyclase one-pass transmembrane proteins performing receptor functions have been discovered. In the amoeba D. discoideum, three types of adenylyl cyclases were detected, which differ by their topology, domain organization, and sensitivity to regulatory molecules and physical factors, one of which, adenylyl cyclase-A (AC-A), is similar to mammalian membrane-bound adenylyl cyclases and regulated by extracellular cAMP. Yeasts, in turn, have been shown to possess adenylyl cyclases that do not have transmembrane domains, but are able to form intermolecular complexes stabilized by interactions between repeated regions enriched in leucine residues. The data presented in this review indicate that the main molecular mechanisms underlying the actions of vertebrate adenylyl cyclases evolved as early as in the unicellular organisms and fungi. The structures and functions of adenylyl cyclases of the lower eukaryotes are much more diverse, which might be due both to the peculiarities of their life cycles and to the development at the initial stages of evolution of different models for the functioning and regulation of cAMP-dependent signaling cascades.  相似文献   

10.
Molecular activities, biosynthesis and evolution of triterpenoid saponins   总被引:3,自引:0,他引:3  
Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny.This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery.  相似文献   

11.
Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA‐based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These criteria are best met in structure‐based sequence alignments of large super‐families. So far, CMA‐techniques have mainly been employed to study the receptor interactions. The present work shows how a novel CMA tool, called Comulator, can be used to determine networks of functionally related residues in enzymes. These analyses provide leads for protein engineering studies that are directed towards modification of enzyme specificity or activity. As proof of concept, Comulator has been applied to four enzyme super‐families: the isocitrate lyase/phoshoenol‐pyruvate mutase super‐family, the hexokinase super‐family, the RmlC‐like cupin super‐family, and the FAD‐linked oxidases super‐family. In each of those cases networks of functionally related residue positions were discovered that upon mutation influenced enzyme specificity and/or activity as predicted. We conclude that CMA is a powerful tool for redesigning enzyme activity and selectivity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Protein families are a rich source of information; sequence conservation and sequence correlation are two of the main properties that can be derived from the analysis of multiple sequence alignments. Sequence conservation is related to the direct evolutionary pressure to retain the chemical characteristics of some positions in order to maintain a given function. Sequence correlation is attributed to the small sequence adjustments needed to maintain protein stability against constant mutational drift. Here, we showed that sequence conservation and correlation were each frequently informative enough to detect incorrectly folded proteins. Furthermore, combining conservation, correlation, and polarity, we achieved an almost perfect discrimination between native and incorrectly folded proteins. Thus, we made use of this information for threading by evaluating the models suggested by a threading method according to the degree of proximity of the corresponding correlated, conserved, and apolar residues. The results showed that the fold recognition capacity of a given threading approach could be improved almost fourfold by selecting the alignments that score best under the three different sequence-based approaches.  相似文献   

13.
Fodor AA  Aldrich RW 《Proteins》2004,56(2):211-221
It has long been argued that algorithms that find correlated mutations in multiple sequence alignments can be used to find structurally or functionally important residues in proteins. We examined the properties of four different methods for detecting these correlated mutations. On both simple, artificial alignments and real alignments from the Pfam database, we found a surprising lack of agreement between the four correlated mutation methods. We argue that these differences are caused in part by differing sensitivities to background conservation. Correlated mutation algorithms can be envisioned as "filters" of background conservation with each algorithm searching for correlated mutations that occur at a different background conservation frequency.  相似文献   

14.
In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues of the channel/constriction apparatus, Ala525 and Glu526, were previously showed as critical for maintaining the enzyme functionality. In this work sixteen novel mutants, each bearing a substitution at or around the channel constrictions, were tested for their enzymatic activity. Modelling studies showed that the most functionality-lowering substitutions deeply alter the H-bond network involving the channel/constriction apparatus. A rotation of Tyr239 is proposed as part of the mechanism permitting the access of the substrate to the active site. The inhibition of OSC by squalene was used as a tool for understanding whether the residues under study are involved in a pre-catalytic selection and docking of the substrate oxidosqualene.  相似文献   

15.
16.
Xue Z  Duan L  Liu D  Guo J  Ge S  Dicks J  ÓMáille P  Osbourn A  Qi X 《The New phytologist》2012,193(4):1022-1038
Triterpenes are one of the largest classes of plant metabolites and have important functions. A diverse array of triterpenoid skeletons are synthesized via the isoprenoid pathway by enzymatic cyclization of 2,3-oxidosqualene. The genomes of the lower plants Chlamydomonas reinhardtii and moss (Physcomitrella patens) contain just one oxidosqualene cyclase (OSC) gene (for sterol biosynthesis), whereas the genomes of higher plants contain nine to 16 OSC genes. Here we carry out functional analysis of rice OSCs and rigorous phylogenetic analysis of 96 OSCs from higher plants, including Arabidopsis thaliana, Oryza sativa, Sorghum bicolor and Brachypodium distachyon. The functional analysis identified an amino acid sequence for isoarborinol synthase (OsIAS) (encoded by Os11g35710/OsOSC11) in rice. Our phylogenetic analysis suggests that expansion of OSC members in higher plants has occurred mainly through tandem duplication followed by positive selection and diversifying evolution, and consolidated the previous suggestion that dicot triterpene synthases have been derived from an ancestral lanosterol synthase instead of directly from their cycloartenol synthases. The phylogenetic trees are consistent with the reaction mechanisms of the protosteryl and dammarenyl cations which parent a wide variety of triterpene skeletal types, allowing us to predict the functions of the uncharacterized OSCs.  相似文献   

17.
Abstract

Enzymatic cyclizations of squalene and oxidosqualene lead to sterols and other triterpenoids in bacteria, fungi, plants, and animals. The cyclases for these reactions catalyze formation and stabilization of polycyclic carbocations and direct the enzyme-specific, templated formation of new carbon-carbon bonds in regio- and stereochemically defined contexts. The development of mechanism-based irreversible inhibitors, photoactivatable inhibitors, and numerous substrate analogs have helped to unravel the stepwise events occurring in the catalytic sites of these enzymes by covalent modification of specific amino acid residues.  相似文献   

18.
Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.  相似文献   

19.

Background  

Studies of the structure-function relationship in proteins for which no 3D structure is available are often based on inspection of multiple sequence alignments. Many functionally important residues of proteins can be identified because they are conserved during evolution. However, residues that vary can also be critically important if their variation is responsible for diversity of protein function and improved phenotypes. If too few sequences are studied, the support for hypotheses on the role of a given residue will be weak, but analysis of large multiple alignments is too complex for simple inspection. When a large body of sequence and functional data are available for a protein family, mature data mining tools, such as machine learning, can be applied to extract information more easily, sensitively and reliably. We have undertaken such an analysis of voltage-gated potassium channels, a transmembrane protein family whose members play indispensable roles in electrically excitable cells.  相似文献   

20.
Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号