首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most developing lymphocytes spontaneously die in the thymus during positive and negative selection of the T cell repertoire. By evaluating the expression of the proliferation antigens Ki-67 and PCNA, we demonstrated here that more than 95% of thymocytes are potentially proliferating. The coincidence within the same cell population of death and proliferation is thus apparent in developing thymocytes. Using dual-parameter cytometric techniques to evaluate in single cells the amount of DNA versus light-scattering values, we found that spontaneous thymocyte apoptosis occurs with similar frequency in all the cycle phases, whereas apoptosis induced by the anti-topoisomerase-II, etoposide (which is the consequence of irreversible DNA damage), takes place with higher frequency in S and G2phases (i.e., in those cycle phases in which DNA is subjected to torsional constraints). The capability of thymocytes to enter apoptosis was also monitored by digesting DNAin situwith DNase I (a nuclease that cleaves DNA mimicking the nuclear damage common to most apoptotic suicides). We also show that endonuclease-mediated DNA digestion occurs to a similar extent in cells with different DNA contents, i.e., in cycle phases in which the superstructural organization of chromatin is markedly different.  相似文献   

2.
The RAD6 pathway allows replication across DNA lesions by either an error-prone or error-free mode. Error-prone replication involves translesion polymerases and requires monoubiquitylation at lysine (K) 164 of PCNA by the Rad6 and Rad18 enzymes. By contrast, the error-free bypass is triggered by modification of PCNA by K63-linked polyubiquitin chains, a reaction that requires in addition to Rad6 and Rad18 the enzymes Rad5 and Ubc13-Mms2. Here, we show that the RAD6 pathway is also critical for controlling repair pathways that act on DNA double-strand breaks. By using gapped plasmids as substrates, we found that repair in wild-type cells proceeds almost exclusively by homology-dependent repair (HDR) using chromosomal DNA as a template, whereas non-homologous end-joining (NHEJ) is suppressed. In contrast, in cells deficient in PCNA polyubiquitylation, plasmid repair occurs largely by NHEJ. Mutant cells that are completely deficient in PCNA ubiquitylation, repair plasmids by HDR similar to wild-type cells. These findings are consistent with a model in which unmodified PCNA supports HDR, whereas PCNA monoubiquitylation diverts repair to NHEJ, which is suppressed by PCNA polyubiquitylation. More generally, our data suggest that the balance between HDR and NHEJ pathways is crucially controlled by genes of the RAD6 pathway through modifications of PCNA.  相似文献   

3.
EM9 cells are a line of Chinese hamster ovary cells that are sensitive to killing by ethylmethanesulfonate (EMS) and X ray, since they are unable to repair the DNA damage inflicted by these agents. Through DNA-mediated gene transfer, human DNA and a selectable marker gene, pSV2neo, were transfected into EM9 cells. Resistant clones of transfected cells were selected for by growth in EMS and G418 (an antibiotic lethal to mammalian cells not containing the transfected neo gene). One primary clone (APEX1) and one secondary clone (TEMS2) were shown to contain both marker and human DNA sequences by Southern blot. In cell survival studies, APEX1 was shown to be as resistant to EMS and X ray as the parental cell type AA8 (CHO cells). TEMS2 cells were found to be partially resistant to EMS and X ray, displaying an intermediate phenotype more sensitive than AA8 cells but more resistant than EM9 cells. Alkaline elution was used to assess the DNA strand-break rejoining ability of these cells at 23 degrees C. APEX1 cells showed DNA repair capacity equal to that of AA8 cells; 75% of the strand breaks were repaired with a rejoining T 1/2 of 3 min. TEMS2 showed similar levels of repair but a T 1/2 for repair of 9 min. EM9 cells repaired only 25% of the breaks and showed a T 1/2 for repair of 16 min. The DNA repair data are consistent with the survival data in that the more resistant cell lines showed a greater capacity for DNA repair. The data support the conclusion that APEX1 and TEMS2 cells contain a human DNA repair gene.  相似文献   

4.
While the Ku complex, comprised of Ku70 and Ku80, is primarily involved in the repair of DNA double-strand breaks, it is also believed to participate in additional cellular processes. Here, treatment of embryo fibroblasts (MEFs) derived from either wild-type or Ku80-null (Ku80(-/-)) mice with various stress agents revealed that hydrogen peroxide (H(2)O(2)) was markedly more cytotoxic for Ku80(-/-) MEFs and led to their long-term accumulation in the G2 phase. This differential response was not due to differences in DNA repair, since H(2)O(2)-triggered DNA damage was repaired with comparable efficiency in both Wt and Ku80(-/-) MEFs, but was associated with differences in the expression of important cell cycle regulatory genes. Our results support the notion that Ku80-mediated cytoprotection and G2-progression are not only dependent on the cell's DNA repair but also may reflect Ku80's influence on additional cellular processes such as gene expression.  相似文献   

5.
Microsatellite instability (MSI) is a phenotype associated with the deficient repair of replication errors. Replication errors persist in defective mismatch repair (MMR) conditions, although alterations in components of the replication machinery, such as the proliferating cell nuclear antigen (PCNA) factor, could also increase the replication errors; therefore, MSI is expected in both situations. It also seems that heterozygous individuals for MMR genes have a high risk of cancer, as in the case of human non-polyposis colon carcinoma (HNPCC), characterised by MSI. Thus, here we investigate the effect of heterozygosity for a Msh2-null allele or for altered PCNA alleles, on the stability of microsatellite sequences. The study was carried out in Drosophila germ cells analysing the progeny of individual crosses. We found that one Msh2 disrupted allele is sufficient to produce MSI in germ cells. Although the MSI in Msh2(-/+) individuals was in the same order of magnitude as in Msh2(-/-) individuals, the former manifested a MSI that was four-fold lower. To a lesser extent, PCNA homozygous and heterozygous mutants also show MSI in the germline, which reveals the importance of DNA replication factors to maintain genomic stability in vivo. Furthermore, the high MSI found both in heterozygous Msh2 and PCNA mutants suggests a high degree of genomic instability in individuals bearing a mutant allele of these genes, which could have important implications in cancer susceptibility.  相似文献   

6.
Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.  相似文献   

7.
8.
Methylation damage response in hematopoietic progenitor cells   总被引:1,自引:0,他引:1  
The cellular response to methylation DNA damage was compared in multipotent CD34(+) hematopoietic stem cells and mature CD34(-) cells isolated from cord blood of the same donor. Cytofluorimetric analysis of freshly isolated cord blood cells indicated that both cell types were in the G0/G1 phase of the cell cycle. Quantitative RT-PCR identified a general trend towards high expression of several DNA repair genes in CD34(+) cells compared to their terminally differentiated CD34(-) counterparts. The overexpressed genes included members of the mismatch repair (MMR) (MSH2, MSH6, MLH1, PMS2), base excision repair (AAG, APEX), DNA damage reversal (O(6)-methylguanine DNA methyltransferase) (MGMT), and DNA double strand breaks repair pathways. These differences in gene expression were not apparent in CD34(+) and CD34(-) cells obtained following expansion of CD34(+) cells in a medium containing early acting cytokines. Early progenitor CD34(+) and early precursor CD34(-) cells form the two populations isolated under these experimental conditions, and both contain a significant proportion of cycling cells. The methylating agent N-methyl-N-nitrosourea (MNU) induced similar levels of apoptosis in these cycling CD34(+) and CD34(-) cells. Cytotoxicity required the presence of the MGMT inhibitor O(6)-benzylguanine and the timing of MNU cell death (48 and 72h) was similar in CD34(+) and CD34(-) cells. These data indicate that cycling CD34(+) and CD34(-) cells are equally sensitive to methylation damage. MGMT provides significant protection against MNU toxicity and MGMT and MMR play the expected roles in the MNU sensitivity of these cells.  相似文献   

9.
The contribution of single nucleotide polymorphisms (SNPs) in base excision repair (BER) genes to the risk of breast cancer (BC) was evaluated by focusing on two key genes: apurinic/apyrimidinic endonuclease 1 (APEX1) and 8-oxoguanine DNA glycosylase (OGG1). Genetic variations in the genes encoding these DNA repair enzymes may alter their functions and increase susceptibility to carcinogenesis. The aim of this study was to analyze polymorphisms in two BER genes, exploring their associations and particularly the combined effects of these variants on BC risk in a Korean population. Three SNPs of two BER genes were genotyped using the Illumina GoldenGate™ method. In total, 346 BC patients and 361 cancer-free controls were genotyped for these BER gene polymorphisms and analyzed for their correlation with BC risk in multiple logistic regression models. Multiple logistic regression models adjusted for age, family history of BC, and body mass index were used. The APEX1 Asp148Glu polymorphism was weakly associated with BC risk. The combined analysis among the BER genes, however, showed significant effects on BC risk. The APEX1 Asp148Glu carrier, in combination with OGG1 rs2072668 and OGG1 Ser326Cys, was strongly associated with an increased risk of BC. Moreover, the combination of the C–C haplotype of OGG1 with the APEX1 Asp148Glu genotype was also associated with an additive risk effect of BC [ORs = 2.44, 2.87, and 3.50, respectively]. The combined effect of APEX1 Asp148Glu was found to be associated with an increased risk of BC. These results suggest that the combined effect of different SNPs within BER genes may be useful in predicting BC risk.  相似文献   

10.
We isolated a mouse cDNA encoding APEX2 protein and demonstrated that APEX2 binds to PCNA. The level of Apex2 mRNA was high in the thymus, bone marrow, spleen, and kidney in adult mice. Apex2 consists of six exons and is flanked on the 3' end by Alas2 on X chromosome 63.0. Furthermore, Apex2 is flanked on the 5' end by a novel gene with a 106-bp intergenic sequence. We disrupted Apex2 in embryonic stem cells derived from a male mouse, and a 55-kDa APEX2 protein was detected in the nuclei of Apex2(+) but not Apex2-disrupted cells. Immunoelectron microscopy revealed that APEX2 is also localized in the mitochondria of Apex2(+) cells. In serum-stimulated BALB/c 3T3 cells, the level of Apex2 mRNA was transiently increased and the level of APEX2 reached a maximum in the late S phase, thus indicating that APEX2 may participate in postreplicative base excision repair.  相似文献   

11.
Magnesium deficiency in experimental animals leads to inflammation, exacerbated immune stress response and a decrease of specific immune response. It also results in a significant increase in free radical species and subsequent tissue injury. An accelerated thymus involution was observed in Mg-deficient rats in relation to enhanced apoptosis and enhanced susceptibility to oxidative stress. To examine the stress-inducing effects of low Mg status on thymocytes, cDNA arrays were used to evaluate changes in gene expression in weaning rats submitted to Mg deficiency of short duration (2 days). Several genes exhibited changes in their expression caused by Mg deficiency before any perceptible modification in cell integrity and functions. The up-regulated genes included cytochrome c oxidase, glutathione transferase, CuZn superoxide dismutase, genes associated with the stress response (HSP70 and HSP84) and a gene involved in DNA synthesis and repair (GADD45). The down-regulated genes included Na/P cotransporter 1. These findings are consistent with altered cell growth, modifications of ion fluxes and oxidative stress described during Mg deficiency. The observation of induction of genes involved in protection and repair in cells from Mg-deficient animals provides additional evidence of the role of oxidative stress in the pathobiology of this deficiency.  相似文献   

12.
Summary With the use of neutral sucrose sedimentation techniques, the size of unirradiated nuclear DNA and the repair of double-strand breaks induced in it by ionizing radiation have been determined in both wild-type and homozygous rad52 diploids of the yeast Saccharomyces cerevisiae. The number average molecular weight of unirradiated DNA in these experiments is 3.0×108±0.3 Daltons. Double-strand breaks are induced with a frequency of 0.58×10-10 per Daltonkrad in the range of 25 to 100 krad. Since repair at low doses is observed in wild-type but not homozygous rad52 strains, the corresponding rad52 gene product is concluded to have a role in the repair process. Cycloheximide was also observed to inhibit repair to a limited extent indicating a requirement for protein synthesis. Based on the sensitivity of various mutants and the induction frequency of double-strand breaks, it is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks.  相似文献   

13.
Lee SM  Youn B  Kim CS  Kim CS  Kang C  Kim J 《Molecules and cells》2005,20(3):331-338
Ionizing radiation and doxorubicin both produce oxidative damage and double-strand breaks in DNA. Double-strand breaks and oxidative damage are highly toxic and cause cell cycle arrest, provoking DNA repair and apoptosis in cancer cell lines. To investigate the response of normal human cells to agents causing oxidative damage, we monitored alterations in gene expression in F65 normal human fibroblasts. Treatment with g-irradiation and doxorubicin altered the expression of 23 and 68 known genes, respectively, with no genes in common. Both agents altered the expression of genes involved in cell cycle arrest, and arrested the treated cells in G2/M phase 12 h after treatment. 24 h after g-irradiation, the percentage of G1 cells increased, whereas after doxorubicin treatment the percentage of G2/M cells remained constant for 24 h. Our results suggest that F65 cells respond differently to g-irradiation- and doxorubicin-induced DNA damage, probably using entirely different biochemical pathways.  相似文献   

14.
15.
Recruitment of RAD18 to stalled replication forks facilitates monoubiquitination of PCNA during S-phase, promoting translesion synthesis at sites of UV irradiation-induced DNA damage. In this study, we show that RAD18 is also recruited to ionizing radiation (IR)-induced sites of DNA double-strand breaks (DSBs) forming foci which are co-localized with 53BP1, NBS1, phosphorylated ATM, BRCA1 and γ-H2AX. RAD18 associates with 53BP1 and is recruited to DSB sites in a 53BP1-dependent manner specifically during G1-phase, RAD18 monoubiquitinates KBD domain of 53BP1 at lysine 1268 in vitro. A monoubiquitination-resistant 53BP1 mutant harboring a substitution at lysine 1268 is not retained efficiently at the chromatin in the vicinity of DSBs. In Rad18-null cells, retention of 53BP1 foci, efficiency of DSB repair and post-irradiation viability are impaired compared with wild-type cells. Taken together, these results suggest that RAD18 promotes 53BP1-directed DSB repair by enhancing retention of 53BP1, possibly through an interaction between RAD18 and 53BP1 and the modification of 53BP1.  相似文献   

16.
This report is part of a biomarker study conducted in an Italian population with exposure to environmental benzene ranging from 1.43 to 31.41 μg/m3 (values from personal sampling). DNA damage induced by benzene is the crucial mechanism of its genotoxicity, which leads to chronic benzene poisoning, haematotoxicity and leukaemia. Therefore, genetic variation in DNA-repair genes may modulate susceptibility to benzene-induced DNA damage. In light of this, the effects of polymorphisms in DNA-repair genes (APEX1, hOGG1, NBS1, XPD, XRCC1, and XRCC3) on micronucleus (MN) formation as a biomarker of early biological effects were evaluated. A significantly higher median MN frequency was recorded in traffic wardens than in controls. However, none of the analysed polymorphisms was significantly associated with the median MN frequency. A gene-gender interaction was observed for the APEX1 genotype. The APEX1 variant genotype was associated with significantly lower median MN frequency in men, not in women. Statistical analysis did not reveal any association between the score of the protective alleles - hypothetically pushing the pathway towards optimal DNA-damage repair - and MN. Even though there are some limitations in the study, our results indicate that the general population may be exposed to benzene concentrations higher than the threshold level for air-quality standards in the European Union of 10 μg/m3. Furthermore, urban traffic wardens are exposed to significantly higher levels of benzene than individuals spending most of the time indoors. This higher exposure may contribute to DNA damage, suggesting that benzene might be implicated both as an environmental and occupational risk factor in leukaemia and other haematological diseases. In conclusion, this study suggest the need for (i) regular monitoring of traffic wardens for possible exposure to benzene, as a precautionary step to reduce the associated health risks, and (ii) more comprehensive studies in order to better elucidate the involvement of APEX1 genotypes in benzene genotoxicity.  相似文献   

17.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

18.
Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage.  相似文献   

19.
Single-strand breaks (SB) in DNA of irradiated thymocytes are first repaired, at a half-recovery period of a few minutes, then the number of breaks rapidly increases indicating that in addition to chromatin endonucleolysis there is an imbalance between the repair enzymes that generate DNA breaks and eliminate them. The rate of SB accumulation in thymocyte fractions, upon incubation of the cells with 1-beta-D-arabinofuranosyl cytosine (AraC) and hydroxyurea (HU), is directly proportional to their radiosensitivity, whereas DNA ligase activity is higher in a fraction of highly radioresistant thymocytes. Chemical compounds that increase the survival rate of irradiated thymocytes decelerate SB accumulation in DNA and sensitivity of cells to AraC and HU. Ineffective substances have no such an effect.  相似文献   

20.
RAD51 recombinase polymerizes at the site of double-strand breaks (DSBs) where it performs DSB repair. The loss of RAD51 causes extensive chromosomal breaks, leading to apoptosis. The polymerization of RAD51 is regulated by a number of RAD51 mediators, such as BRCA1, BRCA2, RAD52, SFR1, SWS1, and the five RAD51 paralogs, including XRCC3. We here show that brca2-null mutant cells were able to proliferate, indicating that RAD51 can perform DSB repair in the absence of BRCA2. We disrupted the BRCA1, RAD52, SFR1, SWS1, and XRCC3 genes in the brca2-null cells. All the resulting double-mutant cells displayed a phenotype that was very similar to that of the brca2-null cells. We suggest that BRCA2 might thus serve as a platform to recruit various RAD51 mediators at the appropriate position at the DNA-damage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号