首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The green fluorescent protein (GFP) was used as a visual selectable marker to produce transgenic coffee (Coffea canephora) plants following Agrobacterium-mediated transformation. The binary vector pBECKS 2000.7 containing synthetic gene for GFP (sgfp) S65T and the hygromycin phosphotransferase gene hph both controlled by 35S cauliflower mosaic virus CaMV35S promoters was used for transformation. Embryogenic cultures were initiated from hypocotyls and cotyledon leaves of in vitro grown seedlings and used as target material. Selection of transformed tissue was carried out using GFP visual selection as the sole screen or in combination with a low level of antibiotics (hygromycin 10 mg/L), and the efficiency was compared with antibiotics selection alone (hygromycin 30 mg/L). GFP selection reduced the time for transformed somatic embryos formation from 18 weeks on a hygromycin (30 mg/L) antibiotics containing medium to 8 weeks. Moreover, visual selection of GFP combined with low level of antibiotics selection improved the transformation efficiency and increased the number of transformed coffee plants compared to selection in the presence of antibiotics. Molecular analysis confirmed the presence of the sgfp-S65T coding region in the regenerated plants. Visual screening of transformed cells using GFP by Agrobacterium-mediated transformation techniques was found to be efficient and therefore has the potential for development of selectable marker-free transgenic coffee plants.  相似文献   

2.
Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial “Printanor” germplasm now makes possible the integration of useful agronomic and quality traits into this crop.  相似文献   

3.
Particle bombardment and Agrobacterium-mediated transformation are two popular methods currently used for producing transgenic maize. Agrobacterium-mediated transformation is expected to produce transformants carrying fewer copies of the transgene and a more predictable pattern of integration. These putative advantages, however, tradeoff with transformation efficiency in maize when a standard binary vector transformation system is used. Using Southern, northern, real-time PCR, and real-time RT-PCR techniques, we compared transgene copy numbers and RNA expression levels in R1 and R2 generations of transgenic maize events generated using the above two gene delivery methods. Our results demonstrated that the Agrobacterium-derived maize transformants have lower transgene copies, and higher and more stable gene expression than their bombardment-derived counterparts. In addition, we showed that more than 70% of transgenic events produced from Agrobacterium-mediated transformation contained various lengths of the bacterial plasmid backbone DNA sequence, indicating that the Agrobacterium-mediated transformation was not as precise as previously perceived, using the current binary vector system.  相似文献   

4.
Agrobacterium strains harbour insertion sequences, which are known to transpose into genomes as well as into Ti plasmids. In this study we report the inactivation of a transgene due to transposition of the A. tumefaciens insertion sequence IS136. The transposition was discovered following transformation of plant tissues, although the fidelity of the binary vector was confirmed following transformation into Agrobacterium. Such transpositions are rare but can occur and it is thus important to check the fidelity of the binary vector at different times of Agrobacterium growth in order to avoid failure in achieving transgene expression.  相似文献   

5.
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.  相似文献   

6.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

7.
Summary Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.  相似文献   

8.
Plant transformation protocols generally involve the use of selectable marker genes for the screening of transgenic material. The bacterial gene nptII, coding for a neomycin phosphotransferase, and the hpt gene, coding for a hygromycin phosphotransferase, are frequently used. These enzymes detoxify aminoglycoside antibiotics by phosphorylation, thereby permitting cell growth in the presence of antibiotics. Nevertheless, the screening for transgenic regenerated shoots is often partial and difficult due to regeneration of escapes and chimeras. These difficulties can be caused, in part, by an incorrect assumption about the mode of action of antibiotics in bacterial and eukaryotic cells and in in vitro tissue culture. The information contained in this review could be useful to establish better selection strategies by taking into account factors such as explant complexity, transformation and selection protocols that allow better accessibility to cells of Agrobacterium and antibiotics, and faster regeneration methods that avoid collateral effects of antibiotics on recovered, putative transgenic shoots.  相似文献   

9.
Summary We developed efficient genetic transformation protocols for two species of duckweed, Lemna gibba (G3) and Lemna minor (8627 and 8744), using Agrobacterium-mediated gene transfer. Partially differentiated nodules were co-cultivated with Agrobacterium tumefaciens harboring a binary vector containing β-glucuronidase and nptII expression cassettes. Transformed cells were selected and allowed to grow into nodules in the presence of kanamycin. Transgenic duckweed fronds were regenerated from selected nodules. We demonstrated that transgenic duckweed could be regenerated within 3 mo. after Agrobacterium-mediated transformation of nodules. Furthermore, we developed a method for transforming L. minor 8627 in 6 wk. These transformation protocols will facilitate genetic engineering of duckweed, ideal plants for bioremediation and large-scale industrial production of biomass and recombinant proteins.  相似文献   

10.
A critical step in the development of a reproducible Agrobacterium tumefaciens mediated transformation system for a recalcitrant species, such as pearl millet, is the establishment of optimal conditions for efficient T-DNA delivery into target tissue from which plants can be regenerated. A multiple shoot regeneration system, without any intervening callus phase, was developed and used as a tissue culture system for Agrobacterium-mediated transformation. Agrobacterium super virulent strain EHA105 harboring the binary vector pCAMBIA 1301 which contains a T-DNA incorporating the hygromycin phosphotransferase (hpt II) and β-glucuronidase (GUS) genes was used to investigate and optimize T-DNA delivery into shoot apices of pearl millet. A number of factors produced significant differences in T-DNA delivery; these included optical density, inoculation duration, co-cultivation time, acetosyringone concentration in co-cultivation medium and vacuum infiltration assisted inoculation. The highest transformation frequency of 5.79% was obtained when the shoot apex explants were infected for 30 min with Agrobacterium O.D.600 = 1.2 under a negative pressure of 0.5 × 105 Pa and co-cultivated for 3 days in medium containing 400 μM acetosyringone. Histochemical GUS assay and polymerase chain reaction (PCR) analysis confirmed the presence of the GUS gene in putative transgenic plants, while stable integration of the GUS gene into the plant genome was confirmed by Southern analysis. This is the first report showing reproducible, rapid and efficient Agrobacterium-mediated transformation of shoot apices and the subsequent regeneration of transgenic plants in pearl millet. The developed protocol will facilitate the insertion of desirable genes of useful traits into pearl millet.  相似文献   

11.
Reed (Phragmites communis) is a potential bioenergy plant. We report on its first Agrobacterium‐mediated transformation using mature seed‐derived calli. The Agrobacterium strains LBA4404, EHA105, and GV3101, each harboring the binary vector pIG121Hm, were used to optimize T‐DNA delivery into the reed genome. Bacterial strain, cocultivation period and acetosyringone concentration significantly influenced the T‐DNA transfer. About 48% transient expression and 3.5% stable transformation were achieved when calli were infected with strain EHA105 for 10 min under 800 mbar negative pressure and cocultivated for 3 days in 200 μm acetosyringone containing medium. Putative transformants were selected in 25 mg l?1 hygromycin B. PCR, and Southern blot analysis confirmed the presence of the transgenes and their stable integration. Independent transgenic lines contained one to three copies of the transgene. Transgene expression was validated by RT‐PCR and GUS staining of stems and leaves.  相似文献   

12.
A gene encoding staphylokinase from Staphylococcus aureus was cloned into the plant transformation binary vector pCAMBIA1303. The presence of a CaMV::sak-gusA-mgfp gene in Agrobacterium was confirmed by polymerase chain reaction PCR. Tobacco seedlings were used as explants for Agrobacterium tumefaciens-mediated transformation with the pCAMBIA1303sak vector carrying the fusion gene construct CaMV::sak-gusA-mgfp and the expression of the fusion gene was identified in Nicotiana tabacum plants by β-glucuronidas assay. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, -glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.  相似文献   

14.
Agrobacterium-mediated plant transformation protocol was evaluated as a fast method to obtain genetically modified Coffea canephora plantlets. Leaf explants were used as source material for Agrobacterium tumefaciens-mediated transformation involving a vacuum infiltration protocol, followed by a step of somatic embryogenesis induction and a final selection of the transformed plants. A. tumefaciens strain C58CI containing the binary vector pER10W-35SRed was used. PCR amplification of DsRFP gene and visual detection of the red fluorescent protein demonstrated 33% transformed embryos. The protocol presented here produces reliable transgenic coffee embryos in two months.  相似文献   

15.
Summary The effect of the type of gelling agent and of several antibiotics on the adventitious bud regeneration from in vitro leaves was tested on eight pear genotypes. The use of gellan gum (Phytagel™) in the medium instead of agar had a very strong positive effect on the rate of adventitious bud regeneration for all pear genotypes tested in this study. This gelling agent induced faster cell divisions than agar, thus more callus was produced on wound sites and subsequently more buds regenerated. Incubation on gellan gum medium during the first 20 d of bud induction was sufficient to induce a stimulatory effect on regeneration and limited the production of hyperhydric buds. In the prospect of Agrobacterium transformation, the effect of several antibiotics was tested. Cefotaxime (200 mg/l) plus ticarcillin/clavulanic acid (100 mg/l) could be used in the culture medium without affecting the frequency of bud regeneration. The inhibition of bud regeneration was obtained with different kanamycin concentrations according to the gelling agent in the medium. On gellan gum medium, a concentration of 100 mg/l of kanamycin was suitable. These conditions can be recommended for experiments on Agrobacterium-mediated transformation of pear, where bacterial inoculation and presence of antibiotics generally reduce and delay bud regeneration.  相似文献   

16.
Although Agrobacterium-mediated transformation of sorghum has been reported, the process is rather lengthy and remains difficult, requiring some very stringent conditions to obtain transformants. We have investigated and describe the parameters related to cocultivation, culture, and regeneration that have allowed us to obtain transgenic sorghum plants in as little as 2.5 months. We observed a 2.9-fold increase in transformation efficiency when L-cysteine was included in the medium during the cocultivation step. Furthermore, the use of modified AB minimal medium, with lower phosphate levels and acidic pH, during the induction of Agrobacterium resulted in a 2.8-fold improvement in transformation efficiencies. Incorporation of an additional binary vector, harboring extra copies of virG and virC genes, in the Agrobacterium did not confer any improvements in the transformation of sorghum. Characterization of transgene activity provided some interesting results suggesting that CaMV 35S promoter activity in T0 generation is very low during the early stages of development of a transgenic sorghum plant, and is not indicative of the expression level during the later stages of development or in the next generation.  相似文献   

17.
Summary Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine. Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype, explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments, desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols. The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems.  相似文献   

18.
Agrobacterium-mediated barley transformation promises many advantages compared to alternative gene transfer methods, but has so far been established in only a few laboratories. We describe a protocol that facilitates rapid establishment and optimisation of Agrobacterium-mediated transformation for barley by instant monitoring of the transformation success. The synthetic green fluorescent protein (sgfpS65T) reporter gene was introduced in combination with thehpt selectable marker gene into immature embryos of barley (Hordeum vulgare L.) by cocultivation with Agrobacterium tumefaciens strain AGLO harboring binary vector pYF133. Using green fluorescent protein (GFP) as a non-destructive visual marker allowed us to identify single-cell recipients of T-DNA at an early stage, track their fate and evaluate factors that affect T-DNA delivery. GFP screening was combined with a low level hygromycin selection. Consequently, transgenic plantlets ready to transfer to soil were obtained within 50 days of explant culture. Southern blot- and progeny segregation analyses revealed a single copy T-DNA insert in more than half of the transgenic barley plants. T-DNA/barley genomic DNA junctions were amplified and sequenced. The right T-DNA ends were highly conserved and clustered around the first 4 nucleotides of the right 25 bp border repeat, while the left T-DNA ends were more variable, located either in the left 25 bp border repeat or within 13 bp from the left repeat. T-DNAs were transferred from Agrobacterium to barley with exclusion of vector sequence suggesting a similar molecular T-DNA transfer mechanism as in dicotyledonous plants.  相似文献   

19.
A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM l-cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R1 progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R1 progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.  相似文献   

20.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号