首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How plant species diversity affects traits conferring herbivore resistance (e.g., chemical defenses), as well as the mechanisms underlying such effects, has received little attention. One potential mechanism for the effect of diversity on plant defenses is that increased plant growth at high diversity could lead to reduced investment in defenses via growth–defense trade‐offs. We measured tree growth (diameter at breast height) and collected leaves to quantify total phenolics in 2.5‐year‐old plants of six tropical tree species (= 597 plants) in a young experimental plantation in southern Mexico. Selected plants were classified as monocultures or as polycultures represented by mixtures of four of the six species examined. Tree species diversity had a significant negative effect on total phenolics, where polycultures exhibited a 13 percent lower mean concentration than monocultures. However, there was marked variation in the effects of diversity on defenses among tree species, with some species exhibiting strong reductions in phenolic levels in mixtures, whereas others were unresponsive. In addition, tree species diversity had no effect on growth, nor was the negative effect of diversity on chemical defenses mediated by a growth–defense trade‐off. These results demonstrate that tree diversity can alter investment in chemical defenses in long‐lived tree species but that such effect may not always be under strong control by plant endogenous resource allocation trade‐offs. Regardless of the underlying mechanism, these findings have important implications for predicting effects on consumers and ecosystem function.  相似文献   

2.
Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low‐level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress‐induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade‐offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress‐induced trade‐offs with immunity, not cost‐free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen‐induced life‐history trade‐offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.”  相似文献   

3.
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host‐use trade‐offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade‐offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria‐phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade‐offs.  相似文献   

4.
Life‐history theory predicts that access to limited resources leads to trade‐offs between competing body functions. Women, who face higher costs of reproduction when compared to men, should be especially vulnerable to these trade‐offs. We propose the ‘cognitive costs of reproduction hypothesis’, which states that energy trade‐offs imposed by reproduction may lead to a decline in maternal cognitive function during gestation. In particular, we hypothesize that the decline in cognitive function frequently observed during pregnancy is associated with the allocation of resources between the competing energetic requirements of the mother's brain and the developing foetus. Several distinctive anatomical and physiological features including a high metabolic rate of the brain, large infant size, specific anatomical features of the placenta and trophoblast, and the lack of maternal control over glucose flow through the placenta make the occurrence of these trade‐offs likely. Herein, we review several lines of evidence for trade‐offs between gestation and cognition that are related to: (i) energy metabolism during reproduction; (ii) energy metabolism of the human brain; (iii) links between energy metabolism and cognitive function; and (iv) links between gestation and cognitive function. We also review evidence for the important roles of cortisol, corticotropin‐releasing hormone and sex hormones in mediating the effects of gestation on cognition, and we discuss possible neurophysiological mechanisms underlying the observed effects. The evidence supports the view that energy trade‐offs between foetal growth and maternal endocrine and brain function lead to changes in maternal cognition, and that this phenomenon is mediated by neuroendocrine mechanisms involving the hypothalamic–pituitary–adrenal axis, brainstem nucleus locus coeruleus and hippocampus.  相似文献   

5.
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.  相似文献   

6.
Physiology, physics, and ecological interactions can generate trade‐offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade‐offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade‐offs between the duration and repetition rate of acoustic signals—species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade‐offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade‐offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations.  相似文献   

7.
Plant reproductive trade‐offs are thought to be caused by resource limitations or other constraints, but more empirical support for these hypotheses would be welcome. Additionally, quantitative characterization of these trade‐offs, as well as consideration of whether they are linear, could yield additional insights. We expanded our flower removal research on lowbush blueberry (Vaccinium angustifolium) to explore the nature of and causes of its reproductive trade‐offs. We used fertilization, defoliation, positionally biased flower removal, and multiple flower removal levels to discern why reproductive trade‐offs occur in this taxon and to plot these trade‐offs along two continuous axes. We found evidence through defoliation that vegetative mass per stem may trade off with reproductive effort in lowbush blueberry because the two traits compete for limited carbon. Also, several traits including ripe fruit production per reproductive node and fruit titratable acidity may be “sink‐limited”—they decline with increasing reproductive effort because average reproductive structure quality declines. We found no evidence that reproductive trade‐offs were caused by nitrogen limitation. Use of reproductive nodes remaining per stem as a measure of reproductive effort indicated steeper trade‐offs than use of the proportion of nodes remaining. For five of six traits, we found evidence that the trade‐off could be concave down or up instead of strictly linear. Synthesis. To date, studies have aimed primarily at identifying plant reproductive trade‐offs. However, understanding how and why these trade‐offs occur represent the exciting and necessary next steps for this line of inquiry.  相似文献   

8.
Adaptation of one set of traits is often accompanied by attenuation of traits important in other selective environments, leading to fitness trade‐offs. The mechanisms that either promote or prevent the emergence of trade‐offs remain largely unknown, and are difficult to discern in most systems. Here, we investigate the basis of trade‐offs that emerged during experimental evolution of Methylobacterium extorquens AM1 to distinct growth substrates. After 1500 generations of adaptation to a multi‐carbon substrate, succinate (S), many lineages had lost the ability to use one‐carbon compounds such as methanol (M), generating a mixture of M+ and M? evolved phenotypes. We show that trade‐offs in M? strains consistently arise via antagonistic pleiotropy through recurrent selection for loss‐of‐function mutations to ftfL (formate‐tetrahydrofolate ligase), which improved growth on S while simultaneously eliminating growth on M. But if loss of FtfL was beneficial, why were M trade‐offs not found in all populations? We discovered that eliminating FtfL was not universally beneficial on S, as it was neutral or even deleterious in certain evolved lineages that remained M+. This suggests that sign epistasis with earlier arising mutations prevented the emergence of mutations that drove trade‐offs through antagonistic pleiotropy, limiting the evolution of metabolic specialists in some populations.  相似文献   

9.
The evolution of floral display is thought to be constrained by trade‐offs between the size and number of flowers; however, empirical evidence for the trade‐off is inconsistent. We examined evidence for trade‐offs and hierarchical allocation of resources within and between two populations each of the monocarpic perennials, Cardiocrinum cordatum and C. giganteum. Within all populations, flower size–number trade‐offs were evident after accounting for variation in plant size. In addition, variation in flower size explained much variation in flower‐level allocation to attraction, and female and male function, a pattern consistent with hierarchical allocation. However, between population differences in flower size (C. cordatum) and number (C. giganteum) were not consistent with size–number trade‐offs or hierarchical allocation. The population‐level difference in C. cordatum likely reflects the combined influence of a time lag between initiation and maturation of flowers, and higher light levels in one population. Thus, our study highlights one mechanism that may account for the apparent independence of flower size and number in many studies. A prediction of sex allocation theory was also supported. In C. giganteum: plants from one population invested more mass in pistils and less in stamens than did plants from the other population. Detection of floral trade‐offs in Cardiocrinum may be facilitated by monocarpic reproduction, production of a single inflorescence and ease of measuring plant size.  相似文献   

10.
Tropical reforestation (TR) has been highlighted as an important intervention for climate change mitigation because of its carbon storage potential. TR can also play other frequently overlooked, but significant, roles in helping society and ecosystems adapt to climate variability and change. For example, reforestation can ameliorate climate‐associated impacts of altered hydrological cycles in watersheds, protect coastal areas from increased storms, and provide habitat to reduce the probability of species' extinctions under a changing climate. Consequently, reforestation should be managed with both adaptation and mitigation objectives in mind, so as to maximize synergies among these diverse roles, and to avoid trade‐offs in which the achievement of one goal is detrimental to another. Management of increased forest cover must also incorporate measures for reducing the direct and indirect impacts of changing climate on reforestation itself. Here we advocate a focus on “climate‐smart reforestation,” defined as reforesting for climate change mitigation and adaptation, while ensuring that the direct and indirect impacts of climate change on reforestation are anticipated and minimized.  相似文献   

11.
Avian Response to Bottomland Hardwood Reforestation: The First 10 Years   总被引:1,自引:0,他引:1  
Bottomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana predominantly using either Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2–3 m/year) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower‐growing oak species. Grassland birds (Spiza americana[Dickcissel] and Sturnella magna[Eastern Meadowlark]) were indicative of species breeding on oak‐dominated reforestation no more than 10 years old. Agelaius phoeniceus (Red‐winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation no more than 4 years old, whereas 14 species of shrub‐scrub birds (e.g., Passerina cyanea[Indigo Bunting]) and early‐successional forest birds (e.g., Vireo gilvus[Warbling vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods should include a high proportion of fast‐growing early successional species such as cottonwood.  相似文献   

12.
13.
Trade‐offs are central to many topics in biology, from the evolution of life histories to ecological mechanisms of species coexistence. Trade‐offs observed among species may reflect pervasive constraints on phenotypes that are achievable given biophysical and resource limitations. If so, then among‐species trade‐offs should be consistent with trade‐offs within species. Alternatively, trait variation among co‐occurring species may reflect historical contingencies during community assembly rather than within‐species constraints. Here, we test whether a key trade‐off between relative growth rate (RGR) and water‐use efficiency (WUE) among Sonoran Desert winter annual plants is apparent within four species representing different strategies in the system. We grew progeny of maternal families from multiple populations in a greenhouse common garden. One species, Pectocarya recurvata, displayed the expected RGR–WUE trade‐off among families within populations. For other species, although RGR and WUE often varied clinally among populations, among‐family variation within populations was lacking, implicating a role for past selection on these traits. Our results suggest that a combination of limited genetic variation in single traits and negative trait correlations could pose constraints on the evolution of a high‐RGR and high‐WUE phenotype within species, providing a microevolutionary explanation for phenotypes that influence community‐level patterns of abundance and coexistence.  相似文献   

14.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

15.
In nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. Although both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations of Escherichia coli under complex (i.e. stressful combinations of pH, H2O2 and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade‐off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2 and NaCl) for the same duration. The fluctuation‐selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, whereas the populations selected under constant stresses experienced trade‐offs in the environments other than those in which they were selected, the fluctuation‐selected populations could bypass the across‐environment trade‐offs almost entirely. Interestingly, trade‐offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade‐off structure in evolving populations.  相似文献   

16.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

17.
Life‐history traits in birds, such as lifespan, age at maturity, and rate of reproduction, vary across environments and in combinations imposed by trade‐offs and limitations of physiological mechanisms. A plethora of studies have described the diversity of traits and hypothesized selection pressures shaping components of the survival–reproduction trade‐off. Life‐history variation appears to fall along a slow–fast continuum, with slow pace characterized by higher investment in survival over reproduction and fast pace characterized by higher investment in reproduction over survival. The Pace‐of‐Life Syndrome (POLS) is a framework to describe the slow–fast axis of variation in life‐history traits and physiological traits. The POLS corresponds to latitudinal gradients, with tropical birds exhibiting a slow pace of life. We examined four possible ways that the traits of high‐elevation birds might correspond to the POLS continuum: (i) rapid pace, (ii) tropical slow pace, (iii) novel elevational pace, or (iv) constrained pace. Recent studies reveal that birds breeding at high elevations in temperate zones exhibit a combination of traits creating a unique elevational pace of life with a central trade‐off similar to a slow pace but physiological trade‐offs more similar to a fast pace. A paucity of studies prevents consideration of the possibility of a constrained pace of life. We propose extending the POLS framework to include trait variation of elevational clines to help to investigate complexity in global geographic patterns.  相似文献   

18.
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade‐offs with other life‐history traits. Trade‐offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host–parasite system, the trematode eye‐fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species‐specific variation in resistance and tolerance and population‐specific variation in resistance. Further, we demonstrate evidence for a trade‐off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host–parasite interactions.  相似文献   

19.
Local adaptation is considered to be the result of fitness trade‐offs for particular phenotypes across different habitats. However, it is unclear whether such phenotypic trade‐offs exist at the level of individual genetic loci. Local adaptation could arise from trade‐offs of alternative alleles at individual loci or by complementary sets of loci with different fitness effects of alleles in one habitat but selective neutrality in the alternative habitat. To evaluate the genome‐wide basis of local adaptation, we performed a field‐based quantitative trait locus (QTL) mapping experiment on recombinant inbred lines (RILs) created from coastal perennial and inland annual races of the yellow monkeyflower (Mimulus guttatus) grown reciprocally in native parental habitats. Overall, we detected 19 QTLs affecting one or more of 16 traits measured in two environments, most of small effect. We identified 15 additional QTL effects at two previously identified candidate QTLs [DIV ERGENCE (DIV)]. Significant QTL by environment interactions were detected at the DIV loci, which was largely attributable to genotypic differences at a single field site. We found no detectable evidence for trade‐offs for any one component of fitness, although DIV2 showed a trade‐off involving different fitness traits between sites, suggesting that local adaptation is largely controlled by non‐overlapping loci. This is surprising for an outcrosser, implying that reduced gene flow prevents the evolution of individuals adapted to multiple environments. We also determined that native genotypes were not uniformly adaptive, possibly reflecting fixed mutational load in one of the populations.  相似文献   

20.
Evolutionary trade‐offs among demographic parameters are important determinants of life‐history evolution. Investigating such trade‐offs under natural conditions has been limited by inappropriate analytical methods that fail to address the bias in demographic estimates that can result when issues of detection (uncertain detection of individual) are ignored. We propose a new statistical approach to quantify evolutionary trade‐offs in wild populations. Our method is based on a state‐space modeling framework that focuses on both the demographic process of interest as well as the observation process. As a case study, we used individual mark–recapture data for stream‐dwelling Atlantic salmon juveniles in the Scorff River (Southern Brittany, France). In freshwater, juveniles face two life‐history choices: migration to the ocean and sexual maturation (for males). Trade‐offs may appear with these life‐history choices and survival, because all are energy dependent. We found a cost of reproduction on survival for fish staying in freshwater and a survival advantage associated with the “decision” to migrate. Our modeling framework opens up promising prospects for the study of evolutionary trade‐offs when some life‐history traits are not, or only partially, observable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号