首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species distribution models often suggest strong links between climate and species' distribution boundaries and project large distribution shifts in response to climate change. However, attributing distribution shifts to climate change requires more than correlative models. One idea is to examine correlates of the processes that cause distribution shifts, namely colonization and local extinction, by using dynamic occupancy models. The Cape Rock-jumper (Chaetops frenatus) has disappeared over most of its distribution where temperatures are the highest. We used dynamic occupancy models to analyse Cape Rock-jumper distribution with respect to climate (mean temperature and precipitation over the warmest annual quarter), vegetation (proportion of natural vegetation, fynbos) and land-use type (protected areas). Detection/non-detection data were collected over two phases of the Southern African Bird Atlas Project (SABAP): 1987–1991 (SABAP1) and 2008–2014 (SABAP2). The model described the contraction of the Cape Rock-jumper's distribution between SABAP1 and SABAP2 well. Occupancy probability during SABAP1 increased with the proportion of fynbos and protected area per grid cell, and decreased with increases in mean temperature and precipitation over the warmest annual quarter. Mean extinction probability increased with mean temperature and precipitation over the warmest annual quarter, although the associated confidence intervals were wide. Nonetheless, our results showed a clear correlation between climate and the distribution boundaries of the Cape Rock-jumper, and in particular, the species' aversion for higher temperatures. The data were less conclusive on whether the observed range contraction was linked to climate change or not. Examining the processes underlying distribution shifts requires large datasets and should lead to a better understanding of the drivers of these shifts.  相似文献   

2.
Climate is widely assumed to be the primary process that limits the distribution ranges of plants. Yet, savannas have vegetation not at equilibrium with climate, instead its structure and function are shaped by interactions between fire, herbivory, climate, and vegetation. I use the rich literature of a dominant African savanna woody plant, Colophospermum mopane, to demonstrate that climate and disturbance interact with each demographic stage to shape this species range limits. This synthesis highlights that climate‐based predictions for the range of C. mopane inadequately represents the processes that shape its distribution. Instead, seed bank depletion and rainfall limitation create a demographic bottleneck at the early seedling stage. The legacy of top‐kill from disturbance changes tree stand architecture causing a critical limitation in seed supply. Exposure to top‐kill at all demographic stages causes a vigorous resprouting response and shifts tree architecture from that of 1–2 stemmed tall trees to that of a short multi‐stemmed shrub. The shorter, multi‐stemmed shrubs are below the height threshold (4 m) at which they can produce seeds, resulting in shrub‐dominated landscapes that are effectively sterile. This effect is likely most pronounced at the range edge where top‐kill‐inducing disturbances increase in frequency. The proposed mechanistic, demographic‐based understanding of C. mopane''s range limits highlights the complexity of processes that interact to shape its range edges. This insight serves as a conceptual model for understanding the determinants of range limits of other dominant woody savannas species living in disturbance limited ecosystems.  相似文献   

3.
    
Tropical alpine areas are some of the most vulnerable areas in the world to climate change. Their plant communities have narrow thermal niches and have limited geographic areas to expand. Here we examine changes in plant species' abundance and distribution in the Teleki Valley (3900–4500 m asl) of Mount Kenya using a spatially explicit vegetation survey from 1980. Vascular plant species were re-sampled in 35 plots across the valley, and additional size and density data were collected for the two Dendrosenecio species. Overall species richness and diversity were lower in 2021 than in 1980, and the abundance of dominant species had declined. Changes in elevation suggested both upward and downward shifts had occurred. Dendrosenecio keniodendron exhibited a shift towards the valley bottom as well as a change in population structure towards younger individuals. The dominant environmental factors affecting plant composition were similar in both 1980 and 2021, namely elevation, vegetation cover and the presence of D. keniodendron. This keystone species plays a significant role in shaping communities but is undergoing rapid demographic changes, which may have cascading implications on the ecology of the system.  相似文献   

4.
    
Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.  相似文献   

5.

Aim

Global warming is predicted to shift distributions of mountain species upwards, driven by a release from climatic restrictions at their upper distribution limit and increased biotic pressure at their lower distribution limit. In alpine ecosystems, which are characterized by large microclimatic diversity and sparse vegetation cover, the relative importance of abiotic and biotic drivers for species distribution is poorly understood. To disentangle abiotic and biotic mechanisms affecting distributions of alpine species, we investigated how alpine plant species with differing elevational ranges and frequency trends over the past century differ in their microhabitat distribution, and how they respond to neighbouring vegetation.

Location

A total of 11 summits (2635—3410 m a.s.l.) in SE‐Switzerland.

Methods

We quantified the microscale abundance of 12 species in relation to biogeographic (frequency trend, i.e., change in occurrences over the past century, and elevational range on summits) and local microhabitat characteristics (temperature, substrate type). We assessed species size traits in relation to neighbouring vegetation characteristics to investigate possible neighbour interactions.

Results

Species with increasing frequency on summits over the past century were most abundant on scree and warmer slopes. Species with negative or stable frequency trends on summits were more abundant on organic soil and colder slopes. The preferred microhabitats of the latter were rarest overall, decreased with increasing elevation, and had the most competitive neighbours. Size of one high‐alpine specialist, Ranunculus glacialis was negatively related to cover of neighbouring vegetation, whereas other species showed no response to neighbours.

Main conclusions

Long‐term frequency trends of species correlate with their microhabitat association. Species with most negative frequency trends show preferences for the rarest microhabitat conditions, where they likely experience higher competitive pressure in a warming climate. This finding emphasizes the importance of characterizing microhabitat associations and microclimatic diversity to assess present and future distributions of alpine plant species.
  相似文献   

6.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

7.
    
The role of biotic interactions, such as interspecific competition, in driving geographical range evolution is still poorly understood. For instance, lineages distributed across regions with a large number of potential competitors might experience some level of geographical packing of their range limits, so that changes in their geographical distributions are hampered. Conversely, a large number of competitors could instead lead to accelerated rates of geographical range evolution, with lineages shifting their ranges to avoid competition. We recently introduced the concept of clade density (CD; the sum of the areas of overlap between a species and other members of its higher taxon, weighted by their phylogenetic distance) as a proxy of the potential for interspecific competition across the geographical distribution of a given species. In this study, we used a large dataset with 5936 terrestrial vertebrate species to test whether CD is significantly associated with variation in the rate of geographical range evolution using two alternative approaches. First, we tested if there is a significant relationship between CD and the geographical distance between sister species. In addition, we estimated tip rates of geographical range evolution and tested if they were consistently associated with variation in CD. We found no evidence for an effect of CD on geographical range evolution in either of the tested approaches, even after accounting for phylogenetic uncertainty. These results are inconsistent with equilibrial models of species diversification and suggest that interspecific competition might not play a pervasive role in geographical range evolution of terrestrial vertebrates.  相似文献   

8.
9.
Estimates of the percentage of species “committed to extinction” by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species’ range change. We created demographic range models that include climate vs. climate-plus-competition, evaluating their influence on the geographic distribution of Pinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species’ distribution. Instead, the evidence suggests that climate affects other range-limiting processes, including landscape-scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions—through indirect effects, interactions, and feedbacks—are likely to cause sudden changes in abundance and distribution that are not predictable from a climate-only perspective.  相似文献   

10.
11.
    
Understanding the factors that determine rates of range expansion is not only crucial for developing risk assessment schemes and management strategies for invasive species, but also provides important insight into the ability of species to disperse in response to climate change. However, there is little knowledge on why some invasions spread faster than others at large spatiotemporal scales. Here, we examine the effects of human activities, species traits and characteristics of the invaded range on spread rates using a global sample of alien reptile and amphibian introductions. We show that spread rates vary remarkably among invaded locations within a species, and differ across biogeographical realms. Spread rates are positively related to the richness of native congeneric species and human‐assisted dispersal in the invaded range but are negatively correlated with topographic heterogeneity. Our findings highlight the importance of environmental characteristics and human‐assisted dispersal in developing robust frameworks for predicting species' range shifts.  相似文献   

12.
邱波  杜国祯 《西北植物学报》2004,24(9):1646-1650
通过施肥形成的生产力由低到高的过程中,物种多样性往往降低。总体竞争假说认为对所有资源的竞争作用对多样性的影响随着生产力提高而加剧,导致物种多样性的下降;光竞争假说则认为随着生产力提高,种间竞争从低生产力时的地下竞争转向高生产力时的光竞争,是光竞争导致了物种多样性的下降。为了验证这两种假说,本文通过在甘南玛曲高寒草甸的均匀施肥实验,研究了光竞争对高寒草甸植物群落物种多样性和生产力关系的影响。结果表明:(1)随着施肥梯度的增加,大部分植物的生长速率加快,高度和叶面积增加;(2)随着施肥梯度的增加,植物群落地上总的生物量提高,叶面积指数增加,透光率降低,物种多样性减少;(3)个体大小不对称的光竞争导致了高寒草甸植物群落物种多样性随施肥梯度的增加而减少。  相似文献   

13.
In their recent paper published in Science (2016, 351 , 1437–1439), Chan et al. analysed 137 montane gradients, concluding that they found a novel pattern—a negative relationship between mean elevational range size of species and daily temperature variation, which was claimed as empirical evidence for a novel macrophysiological principle (Gilchrist's hypothesis). This intriguing possibility was their key conceptual contribution. Unfortunately, as we show, the empirical evidence was flawed because of errors in the analyses and substantial sampling bias in the data. First, we re‐ran their analyses using their data, finding that their model should have been rejected. Second, we performed two additional re‐analyses of their data, addressing biases and pseudoreplication in different ways, both times again rejecting the evidence claimed to support Gilchrist's hypothesis. These results overturn the key empirical findings of Chan et al.'s study. Therefore, the “macrophysiological principle” should be regarded as currently remaining unsupported by empirical evidence.  相似文献   

14.
    
Aim It is often assumed that species reach their highest densities in the centre of their ranges and decline in abundance toward the edges of the range. Implicit in this notion, which we call the abundant centre hypothesis, is the assumption that the edges of the range are more stressful to organisms and are more likely to show responses to climate change. However, an earlier review and empirical study of patterns of abundance across the range of intertidal invertebrates show little support for the abundant centre hypothesis and further demonstrated that few studies have examined patterns in either abundance or stress across species ranges. In part this gap is due to the logistical difficulties of sampling species across large geographical ranges. Here we use intertidal invertebrates, which have relatively simple linear latitudinal ranges, and heat‐shock proteins, which have been shown to be an integrative measure of organismal stress, to test the hypothesis that species are more stressed at the edges of their range. We use complementary data on population density to test the relationship between stress proteins and overall species density across the species’ range. Location Our sampling programme covered the southern half of the large geographical ranges of two intertidal invertebrates on the Pacific Coast of North America. Sites were spread between northern Baja California, Mexico and Vancouver Island, Canada, a range of c. 22 degrees of latitude. Method We sampled levels of heat‐shock protein 70 (Hsp70) in eight to 12 individuals from each of 20 sites for the intertidal mussel Mytilus californianus and 11 sites for the intertidal snail Nucella ostrina, spread throughout the southern half of their geographical ranges. The relationships between levels of Hsp70 in individuals from a site and (1) latitude of the site, (2) the site's position in the species’ range and (3) average population density were determined. Results No significant relationship was found in either species between levels of Hsp70 and latitude, position in the range or population density. Complex patterns that did emerge may be explained by nonlinear gradients in environmental conditions along the Pacific coast. Specifically, we observed peak values of Hsp70 for both species in northern Oregon, where intertidal zones are disproportionately exposed to daytime emersion (exposure to air) in the summer months of collections. A second peak for M. californianus was found south of Point Conception, California, which is marked by dramatic shifts toward warmer sea temperatures and decreased wave exposure. Main conclusions Patterns that emerged were not predicted by simple models based on the abundant centre hypothesis. However, they are consistent with more complex pictures of heat stress, organismal condition and abundance along a latitudinal gradient that have been demonstrated in recent studies. We suggest that latitudinal complexity, species‐specific differences and local effects must be considered before generalizing the relationship between environmental stress, abundance, range limits and responses of ranges to climate change.  相似文献   

15.
    
A frequent assumption in ecology is that biotic interactions are more important than abiotic factors in determining lower elevational range limits (i.e., the “warm edge” of a species distribution). However, for species with narrow environmental tolerances, theory suggests the presence of a strong environmental gradient can lead to persistence, even in the presence of competition. The relative importance of biotic and abiotic factors is rarely considered together, although understanding when one exerts a dominant influence on controlling range limits may be crucial to predicting extinction risk under future climate conditions. We sampled multiple transects spanning the elevational range limit of Plethodon shenandoah and site and climate covariates were recorded. A two‐species conditional occupancy model, accommodating heterogeneity in detection probability, was used to relate variation in occupancy with environmental and habitat conditions. Regional climate data were combined with datalogger observations to estimate the cloud base heights and to project future climate change impacts on cloud elevations across the survey area. By simultaneously accounting for species’ interactions and habitat variables, we find that elevation, not competition, is strongly correlated with the lower elevation range boundary, which had been presumed to be restricted mainly as a result of competitive interactions with a congener. Because the lower elevational range limit is sensitive to climate variables, projected climate change across its high‐elevation habitats will directly affect the species’ distribution. Testing assumptions of factors that set species range limits should use models which accommodate detection biases.  相似文献   

16.
Life-history theory states that reproductive events confer costs upon mothers. Many studies have shown that reproduction causes a decline in maternal condition, survival or success in subsequent reproductive events. However, little attention has been given to the prospect of reproductive costs being passed onto subsequent offspring, despite the fact that parental fitness is a function of the reproductive success of progeny. Here we use pedigree data from a pre-industrial human population to compare offspring life-history traits and lifetime reproductive success (LRS) according to the cost incurred by each individual's mother in the previous reproductive event. Because producing a son versus a daughter has been associated with greater maternal reproductive cost, we hypothesize that individuals born to mothers who previously produced sons will display compromised survival and/or LRS, when compared with those produced following daughters. Controlling for confounding factors such as socio-economic status and ecological conditions, we show that those offspring born after elder brothers have similar survival but lower LRS compared with those born after elder sisters. Our results demonstrate a maternal cost of reproduction manifested in reduced LRS of subsequent offspring. To our knowledge, this is the first time such a long-term intergenerational cost has been shown in a mammal species.  相似文献   

17.
Climate change is driving the poleward redistribution of coral species, but the rate and magnitude of future range extensions within temperate regions are rarely quantified. A better understanding of the likely future distribution of corals is needed to anticipate the resulting social, economic and environmental implications. Here, we project the rate and magnitude of extensions of suitable thermal conditions for hard coral communities along the east Australian coastline, using data on coral community presence, in conjunction with historical and projected ocean temperatures. Our projections indicate that temperatures will be suitable for coral communities dominated by the subtropical coral Pocillopora aliciae, currently found off Sydney, to extend their range poleward by 80 (RCP 2.6) to 450 km (RCP 8.5) by 2100, corresponding to a rate of 0.9–5.0 km year−1. Similarly, thermal conditions will be such that diverse coral communities, such as those currently occurring in the Solitary Islands, may extend their range by 130 (RCP 2.6) to 580 km (RCP 8.5) by 2100, at a rate of 1.4–6.4 km year−1. These projections are similar to those forecast for coral species in other parts of the world. Newly establishing coral communities in temperate regions may provide a range of novel local economic opportunities, particularly for marine tourism.  相似文献   

18.
  总被引:1,自引:0,他引:1  
While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号