首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the past years, paraphyly of the traditional ‘Caprimulgiformes’ (nightjars and allies) with respect to Apodiformes (swifts and hummingbirds) has been well established, but the relationships between the five ‘caprimulgiform’ family‐level taxa remain controversial. These crepuscular or nocturnal birds differ in numerous anatomical features, and here an analysis of 69 morphological characters is performed. Except for the position of the Nyctibiidae (potoos), the topology of the single most‐parsimonious tree agrees with the results of a recently published large‐scale ‘phylogenomic’ study. Whereas molecular data support a clade including Nyctibiidae and the Steatornithidae (oilbird), potoos were shown to be the sister taxon of Caprimulgidae (nightjars) in the present analysis. A sister group relationship between Nyctibiidae and Caprimulgidae is strongly supported, both in terms of bootstrap robustness and the number of synapomorphies, and it is detailed that the morphological data are more likely to reflect the true relationships of these birds. A classification is proposed, and the term Strisores is introduced for a clade including all ‘Caprimulgiformes’ and Apodiformes. It is most parsimonious to assume a single origin of dark activity in the stem lineage of Strisores and a reversal to diurnal activity in Apodiformes. However, a fourfold origin of dark‐activity in the stem lineages of Steatornithidae, Podargidae, Aegothelidae and the Caprimulgidae/Nyctibiidae cannot be conclusively excluded with the data at hand.  相似文献   

4.
Within the Atlantic–Mediterranean region, the ‘sand gobies’ are abundant and widespread, and play an important role in marine, brackish, and freshwater ecosystems. They include the smallest European freshwater fish, Economidichthys trichonis, which is threatened by habitat loss and pollution, as are several other sand gobies. Key to good conservation management is an accurate account of the number of evolutionary significant units. Nevertheless, many taxonomic and evolutionary questions remain unresolved within the clade, and molecular studies are lacking, especially in the Balkans. Using partial 12S and 16S mitochondrial ribosomal DNA sequences of 96 specimens of at least eight nominal species (both freshwater and marine populations), we assess species relationships and compare molecular and morphological data. The results obtained do not support the monophyly of Economidichthys, suggesting the perianal organ to be a shared adaptation to hole‐brooding rather than a synapomorphy, and urge for a taxonomic revision of Knipowitschia. The recently described Knipowitschia montenegrina seems to belong to a separate South‐East Adriatic lineage. Knipowitschia milleri, an alleged endemic of the Acheron River, and Knipowitschia cf. panizzae, are shown to be very closely related to other western Greek Knipowitschia populations, and appear conspecific. A distinct Macedonian–Thessalian lineage is formed by Knipowitschia thessala, whereas Knipowitschia caucasica appears as an eastern lineage, with populations in Thrace and the Aegean. The present study combines the phylogeny of a goby radiation with insights on the historical biogeography of the eastern Mediterranean, and identifies evolutionary units meriting conservation attention. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 73–91.  相似文献   

5.
Aim When hypotheses of historical biogeography are evaluated, age estimates of individual nodes in a phylogeny often have a direct impact on what explanation is concluded to be most likely. Confidence intervals of estimated divergence times obtained in molecular dating analyses are usually very large, but the uncertainty is rarely incorporated in biogeographical analyses. The aim of this study is to use the group Urophylleae, which has a disjunct pantropical distribution, to explore how the uncertainty in estimated divergence times affects conclusions in biogeographical analysis. Two hypotheses are evaluated: (1) long‐distance dispersal from Africa to Asia and the Neotropics, and (2) a continuous distribution in the boreotropics, probably involving migration across the North Atlantic Land Bridge, followed by isolation in equatorial refugia. Location Tropical and subtropical Asia, tropical Africa, and central and southern tropical America. Methods This study uses parsimony and Bayesian phylogenetic analyses of chloroplast DNA and nuclear ribosomal DNA data from 56 ingroup species, beast molecular dating and a Bayesian approach to dispersal–vicariance analysis (Bayes‐DIVA) to reconstruct the ancestral area of the group, and the dispersal–extinction–cladogenesis method to test biogeographical hypotheses. Results When the two models of geographic range evolution were compared using the maximum likelihood (ML) tree with mean estimates of divergence times, boreotropical migration was indicated to be much more likely than long‐distance dispersal. Analyses of a large sample of dated phylogenies did, however, show that this result was not consistent. The age estimate of one specific node had a major impact on likelihood values and on which model performed best. The results show that boreotropical migration provides a slightly better explanation of the geographical distribution patterns of extant Urophylleae than long‐distance dispersal. Main conclusions This study shows that results from biogeographical analyses based on single phylogenetic trees, such as a ML or consensus tree, can be misleading, and that it may be very important to take the uncertainty in age estimates into account. Methods that account for the uncertainty in topology, branch lengths and estimated divergence times are not commonly used in biogeographical inference today but should definitely be preferred in order to avoid unwarranted conclusions.  相似文献   

6.
7.
8.
9.
In this response we have incorporated data on gastropod and seaweed biodiversity referred to by Ávila et al. (2016, Journal of Biogeography, doi: 10.1111/jbi.12816 ) to allow an updated analysis on marine shallow‐water biogeography patterns. When compared to the biogeography patterns reported in Hachich et al. (2015, Journal of Biogeography, 42 , 1871–1882), we find (1) no differences in the patterns originally reported for reef fish or seaweeds, (2) minor differences in gastropod species–area and species–age patterns and (3) a significant difference for the gastropod species‐isolation pattern. In our original work, we reported that there was limited evidence that gastropod species richness was influenced by island isolation; however, our new analysis reveals a power‐model relationship between these variables. Thus, we are now able to conclude that gastropod species diversity, whose dispersal capacity is intermediate between seaweeds (lowest) and reef fish (highest), is also influenced by island isolation.  相似文献   

10.
Osteoglossomorph fishes are unique in possessing a specialized feeding mechanism, the tongue-bite apparatus (TBA) involving the hyoid apparatus. The TBA is associated with two unique behaviour patterns - raking and open-mouth chewing - used to disable and macerate prey. The kinematics of these two behaviours was compared in two species of knifefishes (family Notopteridae): Xenomystus nigri (Gunther, 1868) and Chitala ornata (Gray, 1831) using high-speed video (250 frames s"1). Both univariate and multivariate analyses indicated that there were significant interspecific differences in both raking and open-mouth chewing. Raking can be divided into three stages; the preparatory phase, power stroke, and recovery phase. During the power stroke posterior motion of the pectoral girdle and neurocranial elevation both appear to play a major role in prey reduction. In Xenomystus the power stroke involves significantly greater levels of neurocranial elevation (35o) and pectoral girdle motion (38% of head length; 9.5o) than that found in Chitala (neurocranial elevation 11o; pectoral girdle motion 11% of head length and 5o). Indeed, Xenomystus represents the most extreme raking behaviour of any osteoglossomorph thus far studied. Temporal displacement variables demonstrated that the power stroke in Xenomystus is significantly faster than in Chitala. Although some of the interspecific differences might be size related, these data suggest that a greater degree of difference exists in these highly specialized behaviours than previous work has demonstrated. These findings support the notion that biomechanical duplication (an additional ligament found in osteoglossomorphs) could be linked to increased functional versatility.  相似文献   

11.
12.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

13.
14.
15.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

16.
17.
1. Water quality monitoring data from 10 watercourses and laboratory mesocosm studies were used to assess the potential impacts of the crustacean amphipod invader Dikerogammarus villosus on resident macroinvertebrate assemblage structure in Central European fresh waters. 2. The presence of D. villosus was associated with a decline in the prevalence of many native species, pollution sensitive as well as pollution tolerant, and changes in biotic indices, despite the trends of improved water quality coinciding with the invasion period. A general increase in the prevalence of other invaders was also noted. The potential impacts of D. villosus were substratum dependent, differing between stone, concrete and sand‐dominated sites. 3. Mean Multimetric Macroinvertebrate Index Flanders (MMIF) values were marginally lower when D. villosus was present (P < 0.06), as opposed to when other amphipod species or no amphipods were present, despite the improved water quality. Mesocosm studies showed that several macroinvertebrate taxa were completely eliminated in treatments with D. villosus, oligochaete worms, Caenidae mayfly, chironomids and tipulids being particularly vulnerable to D. villosus predation. Biological Monitoring Working Party (BMWP) scores were lower in mesocosms with D. villosus as opposed to the native Gammarus pulex or no amphipods at all. 4. We predict that resident macroinvertebrate assemblages in both Central Europe and Britain will come under increasing pressure as D. villosus invasions progress. Consequently, macroinvertebrate biotic indices, such as the MMIF or BMWP, may need to be revised to account for changes in taxa sensitivities to water quality as well as increased predation and competition.  相似文献   

18.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

19.
It has been reported that insecticide‐detoxifying enzymes such as glutathione S‐transferases (GST) and esterases are affected by microbial infections in hemipteran insect vectors. The total protein content, and GST and α‐ and β‐esterase activities were quantified in ‘Candidatus Phytoplasma ulmi’‐infected and uninfected adults of Amplicephalus curtulus Linnavuori & DeLong (Hemiptera: Cicadellidae) at 25, 35, and 45 days after the acquisition access period (AAP) in the head‐thorax and abdomen sections. The total protein content was lower in phytoplasma‐infected leafhoppers 25, 35, and 45 days after the AAP. Thirty‐five days after the AAP, the GST and β‐esterase activities had increased (26 and 69%, respectively) compared to the control. However, 45 days after the AAP, the phytoplasma‐infected leafhoppers displayed lower GST (87%) and β‐esterase (253%) activities than the uninfected individuals. On the other hand, the α‐esterase activity proved to be unaffected by the phytoplasma infection. Forty‐five days after the AAP, females had a higher phytoplasma titer (46%) in their head‐thorax than in their abdomen sections, whereas males showed a higher titer in their abdomens (75%). In addition, the GST and β‐esterase activities in the abdomen were affected negatively by 96–98% as a result of the increasing ‘Ca. Phytoplasma ulmi’ titer. These results indicate that an infection of ‘Ca. Phytoplasma ulmi’ alters the metabolic activities of A. curtulus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号