首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.Wnt pathways play major roles in cell-fate specification, proliferation and differentiation, cell polarity, and morphogenesis (Clevers 2006; van Amerongen and Nusse 2009). Signaling is initiated in the responding cell by the interaction of Wnt ligands with different receptors and coreceptors, including Frizzled, LRP5/6, ROR1/2, RYK, PTK7, and proteoglycans (Angers and Moon 2009; Kikuchi et al. 2009; MacDonald et al. 2009). Receptor activation is accompanied by the phosphorylation of Dishev-elled (Yanagawa et al. 1995), which appears to transduce the signal to both the cell membrane and the nucleus (Cliffe et al. 2003; Itoh et al. 2005; Bilic et al. 2007). Another common pathway component is β-catenin, an abundant component of adherens junctions (Nelson and Nusse 2004; Grigoryan et al. 2008). In response to signaling, β-catenin associates with T-cell factors (TCFs) and translocates to the nucleus to stimulate Wnt target gene expression (Behrens et al. 1996; Huber et al. 1996; Molenaar et al. 1996).This β-catenin-dependent activation of specific genes is often referred to as the “canonical” pathway. In the absence of Wnt signaling, β-catenin is destroyed by the protein complex that includes Axin, GSK3, and the tumor suppressor APC (Clevers 2006; MacDonald et al. 2009). Wnt proteins, such as Wnt1, Wnt3, and Wnt8, stimulate Frizzled and LRP5/6 receptors to inactivate this β-catenin destruction complex, and, at the same time, trigger the phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2 (HIPK2) (Hikasa et al. 2010; Hikasa and Sokol 2011). Both β-catenin stabilization and the regulation of TCF protein function by phosphorylation appear to represent general strategies that are conserved in multiple systems (Sokol 2011). Thus, the signaling pathway consists of two branches that together regulate target gene expression (Fig. 1).Open in a separate windowFigure 1.Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase kinase 3 (GSK3) binds Axin and APC to form the β-catenin destruction complex. Some Wnt proteins, such as Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize β-catenin (β-cat). Stabilized β-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover, GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which β-catenin is required as a scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).Other Wnt proteins, such as Wnt5a or Wnt11, strongly affect the cytoskeletal organization and morphogenesis without stabilizing β-catenin (Torres et al. 1996; Angers and Moon 2009; Wu and Mlodzik 2009). These “noncanonical” ligands do not influence TCF3 phosphorylation (Hikasa and Sokol 2011), but may use distinct receptors such as ROR1/2 and RYK instead of or in addition to Frizzled (Hikasa et al. 2002; Lu et al. 2004; Mikels and Nusse 2006; Nishita et al. 2006, 2010; Schambony and Wedlich 2007; Grumolato et al. 2010; Lin et al. 2010; Gao et al. 2011). In such cases, signaling mechanisms are likely to include planar cell polarity (PCP) components, such as Vangl2, Flamingo, Prickle, Diversin, Rho GTPases, and c-Jun amino-terminal kinases (JNKs), which do not directly affect β-catenin stability (Fig. 1) (Sokol 2000; Schwarz-Romond et al. 2002; Schambony and Wedlich 2007; Komiya and Habas 2008; Axelrod 2009; Itoh et al. 2009; Tada and Kai 2009; Sato et al. 2010; Gao et al. 2011). This simplistic dichotomy of the Wnt pathway does not preclude some Wnt ligands from using both β-catenin-dependent and -independent routes in a context-specific manner.Despite the existence of many pathway branches, only the β-catenin-dependent branch has been implicated in body-axis specification. Recent experiments in lower vertebrates have identified additional pathway components and targets and provided new insights into the underlying mechanisms.  相似文献   

2.
3.
4.
5.
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand–receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.Fibroblast growth factor (FGF) signaling fulfills essential roles in metazoan development and metabolism. A wealth of literature has documented the requirement for FGF signaling in multiple processes during embryogenesis, including implantation (Feldman et al. 1995), gastrulation (Sun et al. 1999), somitogenesis (Dubrulle and Pourquie 2004; Wahl et al. 2007; Lee et al. 2009; Naiche et al. 2011; Niwa et al. 2011), body plan formation (Martin 1998; Rodriguez Esteban et al. 1999; Tanaka et al. 2005; Mariani et al. 2008), morphogenesis (Metzger et al. 2008; Makarenkova et al. 2009), and organogenesis (Goldfarb 1996; Kato and Sekine 1999; Sekine et al. 1999; Sun et al. 1999; Colvin et al. 2001; Serls et al. 2005; Vega-Hernandez et al. 2011). Recent clinical and biochemical data have uncovered unexpected roles for FGF signaling in metabolic processes, including phosphate/vitamin D homeostasis (Consortium 2000; Razzaque and Lanske 2007; Nakatani et al. 2009; Gattineni et al. 2011; Kir et al. 2011), cholesterol/bile acid homeostasis (Yu et al. 2000a; Holt et al. 2003), and glucose/lipid metabolism (Fu et al. 2004; Moyers et al. 2007). Highlighting its diverse biology, deranged FGF signaling contributes to many human diseases, such as congenital craniosynostosis and dwarfism syndromes (Naski et al. 1996; Wilkie et al. 2002, 2005), Kallmann syndrome (Dode et al. 2003; Pitteloud et al. 2006a), hearing loss (Tekin et al. 2007, 2008), and renal phosphate wasting disorders (Shimada et al. 2001; White et al. 2001), as well as many acquired forms of cancers (Rand et al. 2005; Pollock et al. 2007; Gartside et al. 2009; di Martino et al. 2012). Endocrine FGFs have also been implicated in the progression of acquired metabolic disorders, including chronic kidney disease (Fliser et al. 2007), obesity (Inagaki et al. 2007; Moyers et al. 2007; Reinehr et al. 2012), and insulin resistance (Fu et al. 2004; Chen et al. 2008b; Chateau et al. 2010; Huang et al. 2011), giving rise to many opportunities for drug discovery in the field of FGF biology (Beenken and Mohammadi 2012).Based on sequence homology and phylogeny, the 18 mammalian FGFs are grouped into six subfamilies (Ornitz and Itoh 2001; Popovici et al. 2005; Itoh and Ornitz 2011). Five of these subfamilies act in a paracrine fashion, namely, the FGF1 subfamily (FGF1 and FGF2), the FGF4 subfamily (FGF4, FGF5, and FGF6), the FGF7 subfamily (FGF3, FGF7, FGF10, and FGF22), the FGF8 subfamily (FGF8, FGF17, and FGF18), and the FGF9 subfamily (FGF9, FGF16, and FGF20). In contrast, the FGF19 subfamily (FGF19, FGF21, and FGF23) signals in an endocrine manner (Beenken and Mohammadi 2012). FGFs exert their pleiotropic effects by binding and activating the FGF receptor (FGFR) subfamily of receptor tyrosine kinases that are coded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) in mammals (Johnson and Williams 1993; Mohammadi et al. 2005b). The extracellular domain of FGFRs consists of three immunoglobulin (Ig)-like domains (D1, D2, and D3), and the intracellular domain harbors the conserved tyrosine kinase domain flanked by the flexible amino-terminal juxtamembrane linker and carboxy-terminal tail (Lee et al. 1989; Dionne et al. 1991; Givol and Yayon 1992). A unique feature of FGFRs is the presence of a contiguous segment of glutamic and aspartic acids in the D1–D2 linker, termed the acid box (AB). The two-membrane proximal D2 and D3 and the intervening D2–D3 linker are necessary and sufficient for ligand binding/specificity (Dionne et al. 1990; Johnson et al. 1990), whereas D1 and the D1–D2 linker are implicated in receptor autoinhibition (Wang et al. 1995; Roghani and Moscatelli 2007; Kalinina et al. 2012). Alternative splicing and translational initiation further diversify both ligands and receptors. The amino-terminal regions of FGF8 and FGF17 can be differentially spliced to yield FGF8a, FGF8b, FGF8e, FGF8f (Gemel et al. 1996; Blunt et al. 1997), and FGF17a and FGF17b isoforms (Xu et al. 1999), whereas cytosine-thymine-guanine (CTG)-mediated translational initiation gives rise to multiple high molecular weight isoforms of FGF2 and FGF3 (Florkiewicz and Sommer 1989; Prats et al. 1989; Acland et al. 1990). The tissue-specific alternative splicing in D3 of FGFR1, FGFR2, and FGFR3 yields “b” and “c” receptor isoforms which, along with their temporal and spatial expression patterns, is the major regulator of FGF–FGFR specificity/promiscuity (Orr-Urtreger et al. 1993; Ornitz et al. 1996; Zhang et al. 2006). A large body of structural data on FGF–FGFR complexes has begun to reveal the intricate mechanisms by which different FGFs and FGFRs combine selectively to generate quantitatively and qualitatively different intracellular signals, culminating in distinct biological responses. In addition, these structural data have unveiled how pathogenic mutations hijack the normal physiological mechanisms of FGFR regulation to lead to pathogenesis. We will discuss the current state of the structural biology of the FGF–FGFR system, lessons learned from studying the mechanism of action of pathogenic mutations, and how the structural data are beginning to shape and advance the translational research.  相似文献   

6.
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.Microglia are the resident macrophages of the central nervous system (CNS), which are uniformly distributed throughout the brain and spinal cord with increased densities in neuronal nuclei, including the Substantia nigra in the midbrain (Lawson et al. 1990; Perry 1998). They belong to the nonneuronal glial cell compartment and their function is crucial to maintenance of the CNS in both health and disease (Ransohoff and Perry 2009; Perry et al. 2010; Ransohoff and Cardona 2010; Prinz and Priller 2014).Two key functional features define microglia: immune defense and maintenance of CNS homeostasis. As part of the innate immune system, microglia constantly sample their environment, scanning and surveying for signals of external danger (Davalos et al. 2005; Nimmerjahn et al. 2005; Lehnardt 2010), such as those from invading pathogens, or internal danger signals generated locally by damaged or dying cells (Bessis et al. 2007; Hanisch and Kettenmann 2007). Detection of such signals initiates a program of microglial responses that aim to resolve the injury, protect the CNS from the effects of the inflammation, and support tissue repair and remodeling (Minghetti and Levi 1998; Goldmann and Prinz 2013).Microglia are also emerging as crucial contributors to brain homeostasis through control of neuronal proliferation and differentiation, as well as influencing formation of synaptic connections (Lawson et al. 1990; Perry 1998; Hughes 2012; Blank and Prinz 2013). Recent imaging studies revealed dynamic interactions between microglia and synaptic connections in the healthy brain, which contributed to the modification and elimination of synaptic structures (Perry et al. 2010; Tremblay et al. 2010; Bialas and Stevens 2013). In the prenatal brain, microglia regulate the wiring of forebrain circuits, controlling the growth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). In the postnatal brain, microglia-mediated synaptic pruning is similarly required for the remodeling of neural circuits (Paolicelli et al. 2011; Schafer et al. 2012). In summary, microglia occupy a central position in defense and maintenance of the CNS and, as a consequence, are a key target for the treatment of neurological and psychiatric disorders.Although microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated until recently. Although we knew that microglial progenitors invaded the brain rudiment at very early stages of embryonic development (Alliot et al. 1999; Ransohoff and Perry 2009), it has now been established that microglia arise from yolk sac (YS)-primitive macrophages, which persist in the CNS into adulthood (Davalos et al. 2005; Nimmerjahn et al. 2005; Ginhoux et al. 2010, 2013; Kierdorf and Prinz 2013; Kierdorf et al. 2013a). Moreover, early embryonic brain colonization by microglia is conserved across vertebrate species, implying that it is essential for early brain development (Herbomel et al. 2001; Bessis et al. 2007; Hanisch and Kettenmann 2007; Verney et al. 2010; Schlegelmilch et al. 2011; Swinnen et al. 2013). In this review, we will present the latest findings in the field of microglial ontogeny, which provide new insights into their roles in health and disease.  相似文献   

7.
8.
Aided by advances in technology, recent studies of neural precursor identity and regulation have revealed various cell types as contributors to ongoing cell genesis in the adult mammalian brain. Here, we use stem-cell biology as a framework to highlight the diversity of adult neural precursor populations and emphasize their hierarchy, organization, and plasticity under physiological and pathological conditions.The adult mammalian brain displays remarkable structural plasticity by generating and incorporating new neural cell types into an already formed brain (Kempermann and Gage 1999). Largely restricted within the subventricular zone (SVZ) along the lateral ventricle and the subgranular zone (SGZ) in the dentate gyrus (DG), neural genesis is thought to arise from neural stem cells (NSCs) (Ming and Song 2011). Stem cells are defined by hallmark functions: capacity to self-renew, maintenance of an immature state over a long duration, and ability to generate specialized cell types (Fig. 1). These features distinguish stem cells from committed progenitor cells that more readily differentiate into specialized cell types (Fig. 1). Stem and progenitor cells (collectively called precursors) are additionally characterized by their lineage capacity. For example, multipotential neural precursors generate neurons and glia, whereas unipotential cells produce only one cell type, such as neurons (Gage 2000; Ma et al. 2009). The classical NSC definition is based on cell culture experiments in which a single cell can self-renew and generate neurons, astrocytes, and oligodendrocytes (Gage 2000; Ma et al. 2009). Yet, reprogramming studies have raised the question of whether cultured lineage-restricted neural progenitors acquire additional potential not evident in vivo (Palmer et al. 1999; Kondo and Raff 2000; Gabay et al. 2003). As a result, various lineage models have been proposed to explain cell generation in the adult brain (Fig. 1) (Ming and Song 2011). In one model, bona fide adult stem cells generate multiple lineages at the individual cell level. In another, cell genesis represents a collective property from a mixed population of unipotent progenitors. Importantly, these models are not mutually exclusive as evidence for the coexistence of multiple precursors has been observed in several adult somatic tissues, in which one population preferentially maintains homeostasis and another serves as a cellular reserve (Li and Clevers 2010; Mascre et al. 2012). Recent technical advances, including single-cell lineage tracing (Kretzschmar and Watt 2012), have made it possible to dissect basic cellular and behavioral processes of neural precursors in vivo (Fig. 4) (Bonaguidi et al. 2012). In this work, we review our current knowledge of precursor cell identity, hierarchical organization, and regulation to examine the diverse origins of cell genesis in the adult mammalian brain.Open in a separate windowFigure 1.Models of generating cell diversity in the adult tissues. (A,B) Definitions of stem and progenitor cells. In A, quiescent stem cells (Sq) become active stem cells (Sa) that proliferate to generate different types of specialized cells (C1, C2, C3) and new stem cells (S). The active stem cell can return to quiescence and remain quiescent over long periods of time. In B, lineage-restricted progenitor cells lacking self-renewal capacity (P1, P2, P3) each give rise to distinct populations of specialized cells (C1, C2, C3). (C) Generation of specialized cells in a tissue could be explained by three models. (1) The stem-cell model, in which multipotent stem cells give rise to all the specialized cells in the tissue. (2) The progenitor cell model, in which diverse, lineage-restricted progenitor cells give rise to different cell types in the tissue. (3) A hybrid model, in which a mixture of stem cells and lineage-restricted progenitor cells generate specialized cells of the adult tissue.

Table 1.

Comparison of different methods used to study the generation of new cells in the adult mammalian nervous system
(1) In vivo imaging allows real-time visualization of cells in their natural environment.
(2) Lineage tracing is the utilization of transgenic animals to label single precursor cells and retrospectively analyze the fate choices made by these cells.
(3) Fate mapping entails the study of lineage decision made by populations of cells, utilizing either using transgenic animals or administration of thymidine analogues.
(4) Adenovirus, lentivirus, and retrovirus, when injected into the brain, can be used to trace single cells or population of cells depending on the virus used and the amount of virus injected into the animals.
(5) Transplantation of precursor cells is a useful tool to examine the intrinsic and extrinsic regulation of precursor cells in the brain.
(6–7) Ex vivo methods involve sections in the brain being maintained in culture media, whereas in in vitro studies, the dissociated cells are cultured either as neurospheres or in a monolayer culture system.
Open in a separate windowOpen in a separate windowFigure 4.Regulation of neural precursor plasticity within the classical neurogenic zones. Schematic illustration of example factors and manipulations known to regulate cell genesis in the adult subgranular zone (SGZ) (A) and subventricular zone (SVZ) (B). Numbers denote examples known to affect lineage decisions at the stage indicated in the figure. (A) Stem-cell loss occurs when their proliferation is highly induced, such as through Notch and FoxO deletion (1) (Paik et al. 2009; Renault et al. 2009; Ehm et al. 2010; Imayoshi et al. 2010), or in aged mice (2) (Kuhn et al. 1996; Encinas et al. 2011; Villeda et al. 2011). Mobilization of quiescent radial glia-like cells (RGLs) occurs during voluntary running (3) (Kempermann et al. 1997; van Praag et al. 1999); brain injury, such as injection of the antimitotic drug Ara-C (Seri et al. 2001) (4) or seizure-inducing Kainic acid (5) (Steiner et al. 2008; Jiruska et al. 2013). Molecular inhibitors of RGL activation include SFRP3 and GABA signaling (6) (Song et al. 2012; Jang et al. 2013). Kainic acid-induced seizures activate nonradial progenitor cells (7) (Lugert et al. 2010). Increasing Akt signaling or decreasing tonic GABA signaling alters the division mode of RGLs, fostering the symmetric fate (8) (Bonaguidi et al. 2011; Song et al. 2012). Ectopic expression of Ascl1 changes the fate of intermediate progenitor cells (IPCs) to generate oligodendrocyte progenitor cells (OPCs) (9) (Jessberger et al. 2008) and demyelination injury induces OPC proliferation (10) (Nait-Oumesmar et al. 1999; Menn et al. 2006; Hughes et al. 2013). Stab wound, stroke and ischemic injuries activate astrocytes into reactive astroglia (11) (reviewed in Robel et al. 2011). (B) In the SVZ excessive activation (1) (Paik et al. 2009; Renault et al. 2009; Ehm et al. 2010; Imayoshi et al. 2010) and aging (2) (Kuhn et al. 1996; Molofsky et al. 2006; Villeda et al. 2011) leads to stem-cell loss. Ara-C promotes RGL cell-cycle entry (3) (Doetsch et al. 1999) and stroke injury activates the normally quiescent ependymal cells (4) (Johansson et al. 1999; Coskun et al. 2008; Carlen et al. 2009). Infusion of EGF increases production of astroglia and OPCs while reducing proliferation of IPCs (5) (Craig et al. 1996; Kuhn et al. 1997). Demyelination injury increases OPC proliferation (6) and doublecortin (DCX)+ neural progenitors to swich fate into OPCs (7) (Nait-Oumesmar et al. 1999; Menn et al. 2006; Jablonska et al. 2010; Hughes et al. 2013). Manipulation of the Sonic hedgehog (SHH) signaling pathway can change the fate of a subset of neural progenitors from granule cell (GC) neurons to periglomerular cell (PGC) neurons (8) (Ihrie et al. 2011). Stab wound, stroke, and ischemic injuries activate astrocytes into reactive astroglia (9) (reviewed in Robel et al. 2011).  相似文献   

9.
The Desmosome     
Desmosomes are intercellular junctions that tether intermediate filaments to the plasma membrane. Desmogleins and desmocollins, members of the cadherin superfamily, mediate adhesion at desmosomes. Cytoplasmic components of the desmosome associate with the desmosomal cadherin tails through a series of protein interactions, which serve to recruit intermediate filaments to sites of desmosome assembly. These desmosomal plaque components include plakoglobin and the plakophilins, members of the armadillo gene family. Linkage to the cytoskeleton is mediated by the intermediate filament binding protein, desmoplakin, which associates with both plakoglobin and plakophilins. Although desmosomes are critical for maintaining stable cell–cell adhesion, emerging evidence indicates that they are also dynamic structures that contribute to cellular processes beyond that of cell adhesion. This article outlines the structure and function of the major desmosomal proteins, and explores the contributions of this protein complex to tissue architecture and morphogenesis.The desmosome is an adhesive intercellular junction that is crucial to tissues that experience mechanical stress, such as the myocardium, bladder, gastrointestinal mucosa, and skin (Getsios et al. 2004b; Holthofer et al. 2007). The desmosome was first observed in the spinous layer of epidermis by the Italian pathologist Giulio Bizzozero (1846–1901). Bizzozero''s observations of these small dense nodules, subsequently named “nodes of Bizzozero,” led him to the insightful interpretation of these structures as adhesive cell–cell contact points. The term desmosome was later coined by Josef Schaffer in 1920 and is derived from the Greek words “desmo,” meaning bond or fastening, and “soma,” meaning body (Wells 2005; Calkins and Setzer 2007). The introduction of electron microscopy yielded a series of advances by Porter, Odland, and Kelly in the 1950s and 1960s, which revealed desmosome organization at the ultrastructural level. These studies and others indicated that the desmosome can be divided into three morphologically identifiable zones: the extracellular core region (desmoglea), the outer dense plaque (ODP), and the inner dense plaque (IDP) (Fig. 1A) (Kowalczyk et al. 1994; Schmidt et al. 1994; Green and Jones 1996; North et al. 1999; Garrod and Chidgey 2008).Open in a separate windowFigure 1.A model for the structure of desmosomes. (A) Electron micrograph of a desmosome. (B) Schematic of desmosomal proteins and relative distance from the plasma membrane (PM). The desmosomal cadherins, the desmogleins and desmocollins, extend into extracellular core and outer dense plaque (ODP) to establish contact and adhere to neighboring cells in a Ca2+-dependent manner. The cadherin cytoplasmic tails associate linker proteins, plakoglobin (PG), the plakophilins (PKP), and desmoplakin (DP). DP binds to keratin intermediate filaments (KIF) within the inner dense plaque (IDP), serving to tether the intermediate filaments to the plasma membrane. (Adapted with permission from Kottke et al. 2006.)In the mid 1970s, Skerrow and Matoltsy (Skerrow and Matoltsy 1974a; Skerrow and Matoltsy 1974b) advanced the field by isolating desmosomes using biochemical approaches (Bass-Zubek and Green 2007).These landmark studies provided a foundation for the Franke and Steinberg laboratories to characterize the transmembrane glycoproteins and cytoplasmic plaque proteins that linked the structure to the intermediate filament cytoskeleton, and to develop immunological tools for localizing specific components (Franke et al. 1981; Kapprell et al. 1985; Steinberg et al. 1987). Collectively, these and other studies shaped our current view of how desmosomal components are organized.The transmembrane glycoproteins, termed desmogleins and desmocollins (Garrod and Chidgey 2008), represent separate subfamilies of the cadherin superfamily of calcium dependent adhesion molecules. The extracellular domains of the desmogleins and desmocollins mediate adhesion, whereas the cytoplasmic tails of these cadherins associate with the desmosomal plaque proteins. The outer dense plaque consists of the cytoplasmic tails of the desmosomal cadherins, which bind to members of the armadillo and plakin family of linker proteins (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008). Plakoglobin, a member of the armadillo family, binds directly to the cytoplasmic tails of both the desmogleins and the desmocollins (Wahl et al. 1996; Witcher et al. 1996). Desmoplakin, a member of the plakin family, interacts with both plakoglobin and another subgroup of armadillo family proteins, the plakophilins (Cowin and Burke 1996). Finally, the interaction between desmoplakin and the keratin filaments forms the inner dense plaque, tethering the cytoskeletal network to the adhesion complex (Fig. 1B) (Kowalczyk et al. 1994; Getsios et al. 2004b; Garrod and Chidgey 2008).The following sections of this article describe the structural and functional characteristics of the major desmosomal proteins. In addition, we discuss differences in tissue expression patterns of desmosomal proteins and the role of desmosomes in human disease. A comprehensive review of additional proteins found to regulate or associate with desmosomes is provided elsewhere (Holthofer et al. 2007) and discussion of desmosome dynamics is provided in Green et al. 2009.  相似文献   

10.
Gap Junctions     
Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.Gap junctions are clusters of intercellular channels that allow direct diffusion of ions and small molecules between adjacent cells. The intercellular channels are formed by head-to-head docking of hexameric assemblies (connexons) of tetraspan integral membrane proteins, the connexins (Cx) (Goodenough et al. 1996). These channels cluster into polymorphic maculae or plaques containing a few to thousands of units (Fig. 1). The close membrane apposition required to allow the docking between connexons sterically excludes most other membrane proteins, leaving a narrow ∼2 nm extracellular “gap” for which the junction is named (Fig. 2). Gap junctions in prechordates are composed of innexins (Phelan et al. 1998; Phelan 2005). In chordates, connexins arose by convergent evolution (Alexopoulos et al. 2004), to expand by gene duplication (Cruciani and Mikalsen 2007) into a 21-member gene family. Three innexin-related proteins, called pannexins, have persisted in vertebrates, although it is not clear if they form intercellular channels (Panchin et al. 2000; Bruzzone et al. 2003). 7Å-resolution electron crystallographic structures of intercellular channels composed of either a carboxy-terminal truncation of Cx43 (Unger et al. 1999; Yeager and Harris 2007) or an M34A mutant of Cx26 (Oshima et al. 2007) are available. The overall pore morphologies are similar with the exception of a “plug” in the Cx26 channel pore. The density of this plug is substantively decreased by deletion of amino acids 2–7, suggesting that the amino-terminus contributes to this structure (Oshima et al. 2008). A 3.5-Å X-ray crystallographic structure has visualized the amino-terminus of Cx26 folded into the mouth of the channel without forming a plug, thought to be an image of the open channel conformation (Maeda et al. 2009). The amino-terminus has been physiologically implicated in voltage-gating of the Cx26 and Cx32 channels (Purnick et al. 2000; Oh et al. 2004), lending support to a role for the amino-terminus as a gating structure. However, Cx43 also shows voltage-gating, and its lack of any structure resembling a plug remains unresolved. A comparison of a 1985 intercellular channel structure (Makowski 1985) with the 2009 3.5Å structure (Maeda et al. 2009) summarizes a quarter-century of X-ray progress (Fig. 3).Open in a separate windowFigure 1.A diagram showing the multiple levels of gap junction structure. Individual connexins assemble intracellularly into hexamers, called connexons, which then traffic to the cell surface. There, they dock with connexons in an adjacent cell, assembling an axial channel spanning two plasma membranes and a narrow extracellular “gap.”Open in a separate windowFigure 2.Electron microscopy of gap junctions joining adjacent hepatocytes in the mouse. The gap junction (GJ) is seen as an area of close plasma membrane apposition, clearly distinct from the tight junction (TJ) joining these cells. (Inset A) A high magnification view of the gap junction revealing the 2–3 nm “gap” (white arrows) separating the plasma membranes. (Inset B) A freeze-fracture replica of a gap junction showing the characteristic particles on the protoplasmic (P) fracture face and pits on the ectoplasmic (E) fracture face. The particles and pits show considerable disorder in their packing with an average 9-nm center-to-center spacing.Open in a separate windowFigure 3.A comparison of axial sections through gap-junction structures deduced from X-ray diffraction. The 1985 data (Makowski 1985) were acquired from gap junctions isolated biochemically from mouse liver containing mixtures of Cx32 and Cx26. The intercellular channel (CHANNEL) is blocked at the two cytoplasmic surfaces by electron density at the channel mouths along the sixfold symmetry axis. The 2009 data (Maeda et al. 2009), acquired from three-dimensional crystals of recombinant Cx26, resolve this density at the channel opening as the amino-termini of the connexin proteins, the 2009 model possibly showing an open channel structure.Most cells express multiple connexins. These may co-oligomerize into the same (homomeric) or mixed (heteromeric) connexons, although only certain combinations are permitted (Falk et al. 1997; Segretain and Falk 2004). A connexon may dock with an identical connexon to form a homotypic intercellular channel or with a connexon containing different connexins to form a heterotypic channel (Dedek et al. 2006). Although only some assembly combinations are permitted (White et al. 1994), the number of possible different intercellular channels formed by this 21-member family is astonishingly large. This diversity has significance because intercellular channels composed of different connexins have different physiological properties, including single-channel conductances and multiple conductance states (Takens-Kwak and Jongsma 1992), as well as permeabilities to experimental tracers (Elfgang et al. 1995) and to biologically relevant permeants (Gaunt and Subak-Sharpe 1979; Veenstra et al. 1995; Bevans et al. 1998; Gong and Nicholson 2001; Goldberg et al. 2002; Ayad et al. 2006; Harris 2007).Opening of extrajunctional connexons in the plasma membrane, described as “hemichannel” activity, can be experimentally induced in a variety of cell types. Because first observations of hemichannel activity were in an oocyte expression system (Paul et al. 1991) and dissociated retinal horizontal cells (DeVries and Schwartz 1992), the possible functions of hemichannels composed of connexins and pannexins has enjoyed vigorous investigation (Goodenough and Paul 2003; Bennett et al. 2003; Locovei et al. 2006; Evans et al. 2006; Srinivas et al. 2007; Schenk et al. 2008; Thompson and MacVicar 2008; Anselmi et al. 2008; Goodenough and Paul 2003). Hemichannels have been implicated in various forms of paracrine signaling, for example in providing a pathway for extracellular release of ATP (Cotrina et al. 1998; Kang et al. 2008), glutamate (Ye et al. 2003), NAD+ (Bruzzone et al. 2000), and prostaglandins (Jiang and Cherian 2003).  相似文献   

11.
12.
13.
14.
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer''s disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.Synapses are asymmetric, intercellular junctions that are the basic structural units of neuronal transmission. The correct development of synaptic specializations and the establishment of appropriate connectivity patterns are crucial for the assembly of functional neuronal circuits. Improper synapse formation and function may cause neurodevelopmental disorders, such as mental retardation (MsR) and autism spectrum disorders (ASD) (McAllister 2007; Sudhof 2008), and likely play a role in neurodegenerative disorders, such as Alzheimer''s disease (AD) (Haass and Selkoe 2007).At chemical synapses (reviewed in Sudhof 2004; Zhai and Bellen 2004; Waites et al. 2005; McAllister 2007; Jin and Garner 2008), the presynaptic compartment contains synaptic vesicles (SV), organized in functionally distinct subcellular pools. A subset of SVs docks to the presynaptic membrane around protein-dense release sites, named active zones (AZ). Upon the arrival of an action potential at the terminal, the docked and “primed” SVs fuse with the plasma membrane and release neurotransmitter molecules into the synaptic cleft. Depending on the type of synapse (i.e., excitatory vs. inhibitory synapses), neurotransmitters ultimately activate an appropriate set of postsynaptic receptors that are accurately apposed to the AZ.Synapse formation occurs in several steps (Fig. 1) (reviewed in Eaton and Davis 2003; Goda and Davis 2003; Waites et al. 2005; Garner et al. 2006; Gerrow and El-Husseini 2006; McAllister 2007). Spatiotemporal signals guide axons through heterogeneous cellular environments to contact appropriate postsynaptic targets. At their destination, axonal growth cones initiate synaptogenesis through adhesive interactions with target cells. In the mammalian central nervous system (CNS), immature postsynaptic dendritic spines initially protrude as thin, actin-rich filopodia on the surface of dendrites. Similarly, at the Drosophila neuromuscular junction (NMJ), myopodia develop from the muscles (Ritzenthaler et al. 2000). The stabilization of intercellular contacts and their elaboration into mature, functional synapses involves cytoskeletal arrangements and recruitment of pre- and postsynaptic components to contact sites in spines and boutons. Conversely, retraction of contacts results in synaptic elimination. Both stabilization and retraction sculpt a functional neuronal circuitry.Open in a separate windowFigure 1.(A–C) Different stages of synapse formation. (A) Target selection, (B) Synapse assembly, (C) Synapse maturation and stabilization. (D–F) The role of cell adhesion molecules in synapse formation is exemplified by the paradigm of N-cadherin and catenins in regulation of the morphology and strength of dendritic spine heads. (D) At an early stage the dendritic spines are elongated from motile structures “seeking” their synaptic partners. (E) The contacts between the presynaptic and postsynaptic compartments are stabilized by recruitment of additional cell adhesion molecules. Adhesional interactions activate downstream pathways that remodel the cytoskeleton and organize pre- and postsynaptic apparatuses. (F) Cell adhesion complexes, stabilized by increased synaptic activity, promote the expansion of the dendritic spine head and the maturation/ stabilization of the synapse. Retraction and expansion is dependent on synaptic plasticity.In addition to the plastic nature of synapse formation, the vast heterogeneity of synapses (in terms of target selection, morphology, and type of neurotransmitter released) greatly enhances the complexity of synaptogenesis (reviewed in Craig and Boudin 2001; Craig et al. 2006; Gerrow and El-Husseini 2006). The complexity and specificity of synaptogenesis relies upon the modulation of adhesion between the pre- and postsynaptic components (reviewed in Craig et al. 2006; Gerrow and El-Husseini 2006; Piechotta et al. 2006; Dalva et al. 2007; Shapiro et al. 2007; Yamada and Nelson 2007; Gottmann 2008). Cell adhesive interactions enable cell–cell recognition via extracellular domains and also mediate intracellular signaling cascades that affect synapse morphology and organize scaffolding complexes. Thus, cell adhesion molecules (CAMs) coordinate multiple synaptogenic steps.However, in vitro and in vivo studies of vertebrate CAMs are often at odds with each other. Indeed, there are no examples of mutants for synaptic CAMs that exhibit prominent defects in synapse formation. This apparent “resilience” of synapses is probably caused by functional redundancy or compensatory effects among different CAMs (Piechotta et al. 2006). Hence, studies using simpler organisms less riddled by redundancy, such as Caenorhabditis elegans and Drosophila, have aided in our understanding of the role that these molecules play in organizing synapses.In this survey, we discuss the roles of the best characterized CAM families of proteins involved in synaptogenesis. Our focus is to highlight the complex principles that govern the molecular basis of synapse formation and function from a comparative perspective. We will present results from cell culture studies as well as in vivo analyses in vertebrate systems and refer to invertebrate studies, mainly performed in Drosophila and C. elegans, when they have provided important insights into the role of particular CAM protein families. However, we do not discuss secreted factors, for which we refer the reader to numerous excellent reviews (as for example Washbourne et al. 2004; Salinas 2005; Piechotta et al. 2006; Shapiro et al. 2006; Dalva 2007; Yamada and Nelson 2007; Biederer and Stagi 2008; Salinas and Zou 2008).  相似文献   

15.
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.The translation and decay of mRNAs play key roles in the control of eukaryotic gene expression. The determination of eukaryotic mRNA decay pathways has allowed insight into how translation and mRNA degradation are coupled. Degradation of eukaryotic mRNAs is generally initiated by shortening of the 3′ poly (A) tail (Fig. 1A) (reviewed in Parker and Song 2004; Garneau et al. 2007) by the major mRNA deadenylase, the Ccr4/Pop2/Not complex (Daugeron et al. 2001; Tucker et al. 2001; Thore et al. 2003). Following deadenylation, mRNAs can be degraded 3′ to 5′ by the exosome (Anderson and Parker 1998; Wang and Kiledjian 2001). However, more commonly, mRNAs are decapped by the Dcp1/Dcp2 decapping enzyme and then degraded 5′ to 3′ by the exonuclease, Xrn1 (Decker and Parker 1993; Hsu and Stevens 1993; Muhlrad et al. 1994, 1995; Dunckley and Parker 1999; van Dijk et al. 2002; Steiger et al. 2003). In metazoans, a second decapping enzyme, Nudt16, also contributes to mRNA turnover (Song et al. 2010).Open in a separate windowFigure 1.Eukaryotic mRNA decay pathways. (A) General mRNA decay pathways. (B) Specialized decay pathways that degrade translationally aberrant mRNAs.The processes of mRNA decay and translation are interconnected in eukaryotic cells in many ways. For example, quality control mechanisms exist to detect aberrancies in translation, which then lead to mRNAs being degraded by specialized mRNA decay pathways (Fig. 1B). Nonsense-mediated decay (NMD) is one such mRNA quality control system that degrades mRNAs that terminate translation aberrantly. In yeast, aberrant translation termination leads to deadenylation-independent decapping (Muhlrad and Parker 1994), whereas in metazoan cells NMD substrates can be both decapped and endonucleolytically cleaved and degraded (reviewed in Isken and Maquat 2007). A second quality control system for mRNA translation is referred to as no-go decay (NGD) and leads to endonucleolytic cleavage of mRNAs with strong stalls in translation elongation (Doma and Parker 2006; reviewed in Harigaya and Parker 2010). Another mechanism of mRNA quality control is the rapid 3′ to 5′ degradation of mRNAs that do not contain translation termination codons, which is referred to as non-stop decay (NSD) (Frischmeyer et al. 2002; van Hoof et al. 2002). The available evidence suggests these specialized mechanisms function primarily on aberrant mRNAs that are produced by defects in splicing, 3′ end formation, or damage to RNAs.The main pathway of mRNA degradation is also in competition with translation initiation. Competition between the two processes was first suggested by the observation that removal of the poly (A) tail and the cap structure, both of which stimulate translation initiation, were the key steps in mRNA degradation. In addition, inhibition of translation initiation by strong secondary structures in the 5′UTR, translation initiation inhibitors, a poor AUG context, or mutations in initiation factors increases the rates of deadenylation and decapping (Muhlrad et al. 1995; Muckenthaler et al. 1997; Lagrandeur and Parker 1999; Schwartz and Parker 1999). Moreover, the cap binding protein eIF4E, known to stimulate translation initiation, inhibits the decapping enzyme, Dcp1/Dcp2, both in vivo and in vitro (Schwartz and Parker 1999; Schwartz and Parker 2000). Finally, many mRNA specific regulatory factors, (e.g., miRNAs or PUF proteins), both repress translation and accelerate deadenylation and decapping (reviewed in Wickens et al. 2002; Behm-Ansmant et al. 2006; Franks and Lykke-Anderson 2008; Shyu et al. 2008).In the simplest model, the competition between translation and mRNA degradation can be understood through changes in the proteins bound to the cap and poly (A) tail that then influence the accessibility of these structures to deadenylases and decapping enzymes. For example, given that the Ccr4/Pop2/Not deadenylase complex is inhibited by poly (A)-binding protein (Pab1) (Tucker et al. 2002), the effects of translation on deadenylation are most likely through dynamic changes in the association of Pab1 binding with the poly (A) tail. One possibility is that defects in translation initiation either directly or indirectly decrease Pab1 association with the poly (A) tail. Deadenylation is also affected by aspects of translation termination. For instance, premature translation termination in yeast accelerates poly (A) shortening as part of the process of NMD (Cao and Parker 2003; Mitchell and Tollervey 2003). The coupling of translation termination to deadenylation has been suggested to occur through direct interactions of the translation termination factor eRF3 with Pab1 (Cosson et al. 2002), which may lead to Pab1 transiently dissociating from the poly (A) tail. Interestingly, in yeast, once the poly (A) tail reaches an oligo (A) length of 10–12 residues, a length that reduces the affinity of Pab1, the mRNA can become a substrate for decapping and for binding of the Pat1/Lsm1-7 complex (Tharun and Parker 2001; Chowdhury et al. 2007), which enhances the rate of decapping. This exchange of the Pab1 protein for the Pat1/Lsm1-7 complex is part of the mechanism that allows decapping to be promoted following deadenylation.A similar mRNP dynamic is also likely to occur on the cap structure. Specifically, the competition between translation initiation and decapping suggests that prior to decapping, translation initiation factors are exchanged for decapping factors, thereby assembling a distinct “decapping” mRNP that is no longer capable of translation initiation (Tharun and Parker 2001). This idea is supported by the observation that some decapping activators also function as translational repressors (Coller and Parker 2005; Pilkington and Parker 2008; Nissan et al. 2010). Thus, mRNA decapping appears to occur in two steps, first inhibition of translation initiation and exchange of translation factors for the general repression/degradation machinery, and a second step whereby the mRNA is actually degraded. Thus, by understanding the changes in mRNP states between actively translating mRNAs and mRNAs that are translationally repressed and possibly stored or ultimately degraded we will better understand how the fate of mRNAs is controlled in the cytoplasm.  相似文献   

16.
While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.Since the first electron micrographs that revealed flagella at the cell poles of bacteria, we have known that bacterial cells are polarized and that they are able to decode the underlying positional information to confine the assembly of an extracellular organelle to a polar cellular site (Fig. 1). Foraging into this unknown territory has been challenging, but recent efforts that exploit the power of bacterial genetics along with modern imaging methods to visualize proteins in the minute bacterial cells has yielded several enticing entry points to dissect polarity-based mechanisms and explore potentially contributing subdiffusive characteristics (Golding and Cox 2006).Open in a separate windowFigure 1.Transmission electron micrograph (taken by Jeff Skerker) of a Caulobacter crescentus swarmer cell showing the polar pili (empty arrowheads), the polar flagellum with the flagellar filament (filled arrowheads), and the hook (white arrow) (see Fig. 2A).While polar organelles are a visual manifestation of polarity, it is important to point out that polarity can also be inherent to cells, at least in molecular terms, even in the absence of discernible polar structures. In other words, molecular anatomy can reveal that a bacterial cell, such as an Escherichia coli cell, features specialized protein complexes at or near the poles, despite a perfectly symmetrical morphology (Maddock and Shapiro 1993; Lindner et al. 2008). Such systemic polarization in bacteria, likely stemming from the distinctive division history of each pole, has the potential to be widespread and to be exploited for positioning of polar organelles and protein complexes. As excellent reviews have been published detailing the interplay between cell polarity and protein localization (Dworkin 2009; Shapiro et al. 2009; Kaiser et al. 2010; Rudner and Losick 2010), here we focus on recent progress in understanding the function and localization of spatial regulators of polar organelles. Considering that the ever-growing list of polar protein complexes emerging from systematic and comprehensive localization studies (Kitagawa et al. 2005; Russell and Keiler 2008; Werner et al. 2009; Hughes et al. 2010) is suggestive of multiple polarly confined (organelle-like) functions, understanding their spatial regulation is also of critical relevance in the realm of medical bacteriology, as many virulence determinants also underlie polarity (Goldberg et al. 1993; Scott et al. 2001; Judd et al. 2005; Jain et al. 2006; Jaumouille et al. 2008; Carlsson et al. 2009). Below, we highlight a few prominent examples of overtly polar organelles and the proteins known to date that regulate their polar positioning.  相似文献   

17.
The endocytic network comprises a vast and intricate system of membrane-delimited cell entry and cargo sorting routes running between biochemically and functionally distinct intracellular compartments. The endocytic network caters to the organization and redistribution of diverse subcellular components, and mediates appropriate shuttling and processing of materials acquired from neighboring cells or the extracellular milieu. Such trafficking logistics, despite their importance, represent only one facet of endocytic function. The endocytic network also plays a key role in organizing, mediating, and regulating cellular signal transduction events. Conversely, cellular signaling processes tightly control the endocytic pathway at different steps. The present article provides a perspective on the intimate relationships that exist between particular endocytic and cellular signaling processes in mammalian cells, within the context of understanding the impact of this nexus on integrated physiology.Molecular mechanisms governing the remarkable diversity of endocytic routes and trafficking steps are described elsewhere in the literature (see Bissig and Gruenberg 2013; Henne et al. 2013; Burd and Cullen 2014; Gautreau et al. 2014; Kirchhausen et al. 2014; Mayor et al. 2014; Merrifield and Kaksonen 2014; Piper et al. 2014). Moreover, these have been the focus of many studies in the last 30 years, and the topic has been covered by many excellent reviews, making it unnecessary for us to dwell on this aspect any further here (see, for instance, Howes et al. 2010; McMahon and Boucrot 2011; Sandvig et al. 2011; Parton and del Pozo 2013). Herein, we will instead concentrate our attention on how cellular regulatory mechanisms control endocytosis, as well as on how endocytic events impinge on cell functions. Emphasis will be placed, although not exclusively, on studies that analyze cellular networks using holistic approaches and in vivo analysis. Our aim is to give the reader a flavor of the deep embedding of endocytic processes within cellular programs, a concept we refer to as the endocytic matrix (Scita and Di Fiore 2010).  相似文献   

18.
The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function.Following the pioneering work of George Streisinger in the early 1980s, the zebrafish has emerged as a premier vertebrate model system (Streisinger et al. 1981). A key strength of the zebrafish is that the embryos and early larvae are transparent, allowing exquisite cellular analysis of many dynamic processes, including cell migration, axonal pathfinding, and myelination, among many others (e.g., Gilmour et al. 2002; Lyons et al. 2005; Czopka et al. 2013). The zebrafish also has many advantages for large-scale genetic studies, including relatively small size and rapid development, high fecundity, and the ability to manipulate the ploidy of gametes and early embryos (Kimmel 1989). Through the 1980s and early 1990s, insightful studies of several interesting mutations elegantly exploited these experimental advantages (e.g., Kimmel et al. 1989; Ho and Kane 1990; Hatta et al. 1991; Grunwald and Eisen 2002), attracting many researchers from other fields to the zebrafish system. Following the explosion of interest in the zebrafish in the 1990s, advances in many areas have added to the strengths of the system, including large-scale screens that identified thousands of new mutations (Driever et al. 1996; Haffter et al. 1996), rapid transgenesis (Kawakami et al. 2004), new methods for imaging and tracking all cells during development (Huisken 2012), genetic mapping and sequencing to identify genes and mutated loci (Postlethwait et al. 1994; Howe et al. 2013), optogenetic methods to control neural activity (Portugues et al. 2013), the advent of targeted nucleases to create mutations in genes of interest (Huang et al. 2011; Sander et al. 2011; Bedell et al. 2012; Chang et al. 2013; Hwang et al. 2013), and small molecule screening approaches to isolate compounds with novel biological activities in vivo (Peterson and Fishman 2011).Many fundamental similarities in physiology and body plan unite the zebrafish and other vertebrates (Kimmel 1989). In addition, analysis of genes and genomes has revealed that sequence, expression, and function of many genes are conserved among zebrafish and other vertebrates (Postlethwait and Talbot 1997; Howe et al. 2013). Thus, insights from studies in zebrafish will apply broadly to other vertebrates, including humans. On the other hand, there are important genetic, genomic, and physiological differences among vertebrates. It is, therefore, important to keep possible differences in mind and to recognize that analyzing the diversity among different species may enhance overall understanding of important processes. For example, zebrafish and other teleosts have a much more extensive regenerative ability than mammals, so that studies of fin, heart, and spinal cord regeneration in zebrafish may suggest avenues toward new therapeutic approaches in humans (Gemberling et al. 2013; Becker and Becker 2014).In this review, we provide an overview of different types of glia in the zebrafish, with a focus on some recent studies that highlight the power of the zebrafish system to analyze different aspects of glial development and function.  相似文献   

19.
Receptor tyrosine kinases (RTKs) and their cellular signaling pathways play important roles in normal development and homeostasis. Aberrations in their activation or signaling leads to many pathologies, especially cancers, motivating the development of a variety of drugs that block RTK signaling that have been successfully applied for the treatment of many cancers. As the current field of RTKs and their signaling pathways are covered by a very large amount of literature, spread over half a century, I am focusing the scope of this review on seminal discoveries made before tyrosine phosphorylation was discovered, and on the early days of research into RTKs and their cellular signaling pathways. I review the history of the early days of research in the field of RTKs. I emphasize key early findings, which provided conceptual frameworks for addressing the questions of how RTKs are activated and how they regulate intracellular signaling pathways.The family of cell-surface receptors designated receptor tyrosine kinases (RTK) received their name more that a decade after the same molecules were already known as the cell-surface receptors for insulin (insulin receptor), epidermal growth factor (EGFR), and many other growth factor receptors. Following the pioneering discoveries of nerve growth factor and epidermal growth factor (EGF; Levi-Montalcini and Booker 1960; Cohen 1962) and the establishment of the important roles of these two growth factors in the control of neuronal differentiation and cell proliferation in vivo and in vitro, it became clear that these cytokines bind specifically to cell-surface receptors. Insulin had already been discovered by this time, and had been applied successfully to treat diabetes patients since the early twentieth century. The resulting homogenous preparations of pure insulin enabled the quantitative characterization of insulin binding to its receptor on intact cells or to solubilized insulin receptor preparations using radiolabeled insulin (De Meyts et al. 1973). These studies greatly advanced understanding of the ligand binding characteristics of insulin receptor and, later on EGFR (Carpenter et al. 1975), including the establishment of negative cooperativity in insulin binding to its receptor expressed on the surface of living cells (De Meyts et al. 1973). Moreover, these studies shed important light on the dynamic nature of the cellular behavior of these receptors. The capacities of insulin receptor and EGFR to undergo ligand-dependent down-regulation and desensitization through receptor-mediated internalization and degradation (Carpenter and Cohen 1976; Gordon et al. 1978; Schlessinger et al. 1978a,b; Carpentier et al. 1979; Haigler et al. 1979) were also established well before the realization that growth factors receptors are endowed with intrinsic protein tyrosine kinase activities (Fig. 1).Open in a separate windowFigure 1.A time line of key findings during the history of RTKs, with emphasis on findings and discoveries that produced the conceptual framework in the development of the RTK field and its application for cancer therapy. References for the key findings are also presented in the text (Lee et al. 1985; Libermann et al. 1985; Margolis et al. 1990; Bottaro et al. 1991; Bae et al. 2009).Progress was also made in elucidating the role of growth factors in normal embryonic development, wound healing, and pathological conditions such as cancer. Early studies in the 1960s and 1970s showed that growth factors play an important role in oncogenesis induced by retroviruses and in the proliferation of tumor-derived cancer cells. Pioneering studies performed by Howard Temin (1966, 1967) showed that cancer cells need less insulin and serum growth factors for cell proliferation compared with normal cells, suggesting that cancer cells produce and use their own growth factors and/or use cellular processes that in normal cells are regulated by exogenously supplied growth factors; both predictions were subsequently confirmed. A variety of new polypeptide growth factors that stimulate cell proliferation by binding to receptors at the cell surface were subsequently discovered. Those include a growth factor isolated from human platelets designated platelet-derived growth factor (PDGF; Antoniades et al. 1979; Heldin et al. 1979), a growth factor isolated from bovine brain designated fibroblast growth factor (FGF; Gospodarowicz et al. 1978), a growth factor isolated from rat platelets that stimulates the proliferation of mature hepatocytes, designated hepatocyte growth factor (HGF; Nakamura et al. 1986). In addition to EGF, another growth factor that binds selectively to cells expressing EGFR was isolated from virally and chemically transformed cells, suggesting that this growth factor—designated transforming growth factor α—may play a role in oncogenesis by an autocrine mechanism (Roberts et al. 1980, 1982). This discovery provided further support to the earlier finding that transformation by murine and feline sarcoma viruses selectively interferes with EGF binding to EGFR in transformed cells (Todaro et al. 1976). Together with many other studies published since the 1980s, this work showed that growth factors and their receptors play numerous important roles during development and in many normal cellular processes as well as in pathologies such as cancer, diabetes, atherosclerosis, severe bone disorders, and tumor angiogenesis.Visualization of dynamic cellular redistribution of ligand/receptor complexes, and rapid receptor-mediated internalization of growth factors such as insulin or EGF, led to the proposal that cell-surface receptors for these ligands may play a passive role in delivering them to intracellular compartments in which internalized EGF or insulin molecules exert their actions (Vigneri et al. 1978; Podlecki et al. 1986; Jiang and Schindler 1990). In other words, according to this hypothesis, the biological signals induced by insulin or EGF were thought to be mediated by binding of the ligands themselves to intracellular target(s) in the cytoplasm or nucleus, with the role of the cell-surface receptor being to act as a “carrier” that delivers them directly to these targets. An alternative hypothesis was that insulin or EGF activates their cognate receptors at the cell surface, which in turn stimulate the production of an intracellular second messenger molecule analogous to cAMP in signaling by the G-protein-activating β-adrenergic receptor. Indeed, several potential second messengers that are generated in cells on stimulation with insulin or other growth factors were proposed before (and even after) it became clear that insulin receptor, EGFR, and other RTKs are endowed with intrinsic tyrosine kinase activity (Larner et al. 1979; Das 1980; Saltiel and Cuatrecasas 1986).A demonstration that anti-insulin receptor antibodies from the serum of certain diabetic patients could mimic cellular responses of insulin (Flier et al. 1977; Van Obberghen et al. 1979) provided the first conclusive answer to the question of whether the biological activity of growth factors is mediated directly or indirectly through their membrane receptors. This experiment ruled out the possibility that insulin receptor functions as a passive carrier that delivers insulin to an intracellular target to induce cellular responses. Studies showing that intact, bivalent antibodies against the insulin receptor can activate its signaling, whereas monovalent Fab fragments of the same antibodies cannot further argued that ligand-induced receptor dimerization or stimulation of a particular arrangement between two receptor molecules in a dimer can activate the insulin receptor (Kahn et al. 1978).A similar conclusion was reached using certain monoclonal antibodies that bind to the extracellular region of EGFR and block ligand binding (Schreiber et al. 1981). Whereas intact antibodies were able to mimic EGF in stimulating a variety of EGF-like responses including cell proliferation, monovalent Fab fragments of the same monoclonal EGFR antibodies failed to do so—and acted instead as EGFR antagonists (Schreiber et al. 1981, 1983). These experiments provided strong evidence both that EGFR plays a crucial role in mediating EGF-induced cellular responses and that EGFR is activated by ligand-induced receptor dimerization (Schreiber 1981, 1983).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号