首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first study where elephant footprints as habitat for aquatic macroinvertebrate communities were assessed. Preliminary observations during the dry season in Kibale Forest, Uganda, indicated that water‐filled footprints constituted the majority of stagnant ponds. Consequently, this study aimed at giving an overview of the diversity and ecology of those habitats and the capacity of elephants as ecosystem engineers. The fauna and abiotic factors (age, size, substrate, organic matter, pH, canopy cover, temperature, conductivity) of 30 water‐filled natural elephant footprints were sampled, resulting in the record of 61 morphospecies among 27 families/orders. Species composition was dominated by Hydrophilidae and Dytiscidae and influenced by environmental variables, such as age and organic matter. To study the colonization process, 18 artificial footprints were created within different distances from the water source. After 5 days, 410 specimens were collected, with higher species richness in artificial footprints closer to a natural water source. We conclude that colonization of water‐filled footprints is fast, they constitute important habitats with high diversity and variability, and they act as stepping stones for dispersal and add to the ability of elephants as ecosystem engineers. We emphasize the importance of elephants as a key species in ecosystem dynamics and conservation practice.  相似文献   

2.
Forest succession was studied in four plots in former grasslands at the Ngogo study area in Kibale National Park, Uganda. The plots were located in areas that had been protected from fire for 0.58, 25, 9 and ≈30 years for plots 1, 2, 3 and 4, respectively. Species richness reflected the length of time that the plot had been protected from fire; it was highest in plot 4 and lowest in plot 1. Species density, stem density and basal area were all highest in plot 4 and lowest in plot 1. The species densities of plots 2 and 3 were not different. Similarly, plots 2 and 4 did not differ with regard to stem density or basal area. Animal seed dispersers played a vital role in the colonization of grasslands by forest tree species.  相似文献   

3.
Processes of forest regeneration in two unlogged areas and in three areas that were logged nearly 25 years ago were quantified in Kibale National Park, Uganda. For forests to recover from logging, one would predict recruitment and growth processes to be accelerated in logged areas relative to unlogged areas, facilitating increased recruitment of trees into the adult size classes. We examined this prediction first by determining the growth of 4733 trees over a 51 to 56 month period and found that growth rates in the most heavily logged area were consistently slower than in the two unlogged areas. In contrast, the lightly logged forest had similar growth rates to unlogged areas in the small size classes, but trees in the 30 to 50 cm DBH size cohort exhibited elevated growth rates relative to the unlogged areas. Mortality was highest in the heavily logged areas, with many deaths occurring when healthy trees were knocked over by neighboring treefalls. We found no difference in the density or species richness of seedlings in the logged and unlogged forests. The number of seedlings that emerged from the disturbed soil (seed bank+seed rain) and initially seed-free soil (seed rain) was greater in the logged forest than in the unlogged forest. However, sapling density was lower in the heavily logged areas, suggesting that there is a high level of seedling mortality in logged areas. We suggest that the level of canopy opening created during logging, the lack of aggressive colonizing tree species, elephant activity that is concentrated in logged areas, and an aggressive herb community, all combine to delay vegetation recovery in Kibale Forest.  相似文献   

4.
Changes in species composition, stem abundance, and basal area of trees taller than or equal to 10 m in a medium altitude tropical rain forest at the Ngogo study area, Kibale National Park, Uganda are described for the period between 1975 and 1998 ( n  = 23 years). Two enumeration episodes were conducted in 263 plots of 5 m by 50 m during 1975–80 and 1997–98. During this period, species richness decreased by 3% (from 92 to 89). Species diversity (H') also declined slightly from 2.97 to 2.86. The number of trees recorded in the sample plots decreased by 8% (from 2545 to 2329), while basal area decreased from 49.48 m2 ha−1 to 48.68 m2 ha−1. However, stem abundance and basal area increased for some species.  相似文献   

5.
6.
We examined patterns of crop raiding by elephants across gender and age classes in relation to elephant life history and sociobiology and estimated the quantitative contribution of crops to elephant diet in Kibale National Park (KNP). Elephant dung‐boli sizes were used to estimate age and sex, while the presence of crop remains in the dung of crop‐raiding elephants was used as evidence of repeated raiding. To estimate the expected proportion of elephants raiding per age class, the age distribution of raiders was compared with the age distribution of all KNP elephants. Elephants raiding crops were predominantly males. They began raiding in expected proportions at 10–14 years while a higher than expected proportion raided crops at 20–24 years. These results suggest that crop raiding is initiated at an age when male elephants leave their families and a large proportion of elephants raid when they are approaching reproductive competition. Evidence from dung of crop raiders, suggests that repeated raiding increases with age. Crop raiders derived 38% of their daily forage from the short time spent raiding, consistent with expectations of foraging theory. Males may be more likely to learn crop raiding because they are socially more independent and experience intense mating competition than females.  相似文献   

7.
Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting. ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, and ENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data.  相似文献   

8.
Previous studies suggest that forest regeneration in grasslands is often slow because of grass competition and fire and that regeneration may be dependent on fire‐resistant savannah trees. To examine the potential of savannah trees in facilitating regeneration, species diversity, number and total abundance of species of woody plants were determined below and away from Acacia sieberiana and Erythrina abyssinica tree crowns. Additionally, crown size and distance from a natural forest were estimated to determine their influence on natural regeneration. Results showed that the environment under tree crowns positively influence diversity compared to that outside crowns: including for biodiversity (3.08 versus 2.82), the number of species and total abundance (P < 0.001). However, distance from the forest to trees in the grassland had no influence on these parameters. Vertebrate animals were found to be the major seed dispersers in grasslands of Kibale. We concluded that forests that establish below crowns of savannah trees will be more diverse than those in treeless areas and that crown size is more important than distance from natural forest in facilitating regeneration. Furthermore, A. sieberiana could be more suitable in facilitating natural regeneration, while animals have proved to be vital for regeneration.  相似文献   

9.
10.
In the face of the continuing destruction of tropical rainforests, a major challenge is to understand the consequences of these habitat changes for biodiversity and the time scale at which biodiversity can recover after such disturbances. In this study, we assessed the patterns in communities of birds among forests of varying age consisting of clear-cuts of former coniferous plantations, selectively logged compartments and primary forests in Kibale National Park, Uganda. Birds were surveyed by 10-minute point counts at 174 randomly located points in nine forest areas during September–October 2011. A total of 2 688 birds representing 115 species were recorded. The species density, diversity and dominance of all birds, and dominance of forest specialists showed no differences between forest areas, whereas the species density and diversity of forest specialists differed significantly between forest areas. The composition of communities of all birds and of forest specialists varied significantly among the forest areas. Our results show that even after 19 and 43 years, respectively, communities of birds in clear-cuts of former coniferous plantations and selectively logged forests have not fully recovered from the disturbances of logging, highlighting the need to preserve primary forests for conservation of birds.  相似文献   

11.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

12.
If specialization influences species presence, then high tropical tree and shrub diversity should correspond with high environmental heterogeneity. Such heterogeneity may be found among different successional communities (i.e., canopy types). We explore species associations in three forest-dominated canopy types, forest, gap, and edge, in Kibale National Park, Uganda and determine environmental, soil and light, differences among canopy types. To determine the strength of differences among forested canopy types, they are also compared to grasslands. Tree and shrub density and species richness using rarefaction analysis were determined based on data from 24 small plots (5 × 5 m) in all four canopy types and 16 large plots (10 × 50 m) in forest and grassland canopy types. Environmental variables were determined along 10 (20 m) transects in the four canopy types. Using analysis of variance and principal components analysis, we demonstrate that forest and gap environments had similar soils, but forest had lower light levels than gap. We also found that grassland and edge were more similar to one another than to forest and gap, but differed in a number of important biotic and abiotic factors controlling soil water availability (e.g., edge had higher root length density of small roots < 2 mm diameter in the top 20 cm than grassland). Using principal components analysis to assess similarities in community composition, we demonstrate that gap and forest had indistinguishable communities and that edge was similar to but distinct from both communities. Complete species turnover only occurred between grassland and the three forested canopy types. Even though overall community composition was similar in the three forested canopy types, in analyses of individual species using randomization tests, many common species were most frequently found in only one canopy type; these patterns held across size classes. These results suggest that despite differences among environments, community composition was similar among forested canopy types, which are likely intergrading into one another. Interestingly, individual species are more frequently found in a single canopy type, indicating species specialization.  相似文献   

13.
14.
15.
Given the high rates of deforestation and subsequent land abandonment, there are increasing calls to reforest degraded lands; however, many areas are in a state of arrested succession. Plantations can break arrested succession and the sale of timber can pay for restoration efforts. However, if the harvest damages native regeneration, it may be necessary to intervene with enrichment planting. Unfortunately, it is not clear when intervention is necessary. Here, we document the rate of biomass accumulation of planted seedlings relative to natural regeneration in a harvested plantation in Kibale National Park, Uganda. We established two 2‐ha plots and in one, we planted 100 seedlings of each of four native species, and we monitored all tree regeneration in this area and the control plot. After 4 years, naturally regenerating trees were much taller, larger and more common than the planted seedlings. Species richness and two nonparametric estimators of richness were comparable between the plots. The cumulative biomass of planted seedlings accounted for 0.04% of the total above‐ground tree biomass. The use of plantations facilitated the growth of indigenous trees, and enrichment planting subsequent to harvesting was not necessary to obtain a rich tree community with a large number of new recruits.  相似文献   

16.
Mutualisms between invasive ants and honeydew‐producing insects can have widespread negative effects on natural ecosystems. This is becoming an increasingly serious problem worldwide, causing certain ecosystems to change radically. Management of these abundant and influential mutualistic species is essential if the host ecosystem is to recover to its former non‐invaded status. This negative effect is particularly prevalent on some tropical islands, including Cousine Island, Seychelles. On this island, the invasive ant Pheidole megacephala has caused serious indirect damage to the threatened native Pisonia grandis trees via a mutualism with an invasive scale insect, Pulvinaria urbicola. We aimed to suppress the ant, thereby decoupling the mutualism and enabling recovery of the Pisonia trees. We treated all areas where ant pressure was high with a selective formicidal bait, which was deployed in custom‐made bait stations designed to avoid risk of treatment to endemic fauna. In the treated area, ant foraging activity was reduced by 93 percent and was followed by a 100 percent reduction in scale insect density. Abundance of endemic herbivorous insects and herbivorous activity increased significantly, however, after the decline in mutualistic species densities. Despite the native herbivore increase, there was considerable overall improvement in Pisonia shoot condition and an observed increase in foliage density. Our results demonstrate the benefit of strategic management of highly mutualistic alien species to the native Pisonia trees. It also supports the idea that area‐wide suppression is a feasible alternative to eradication for achieving positive conservation management at the level of the forest ecosystem.  相似文献   

17.
18.
Many butterflies in tropical forests feed on fruits that have fallen to the forest floor. This substrate differs in many ways from floral nectar, and therefore fruit‐feeding butterflies are expected to possess adaptations for efficient foraging, choice, and ingestion of their food. Differences in food quality and in spatial and temporal availability are also likely to have led to life history evolution. Here we describe the sugar and nitrogen content of fruits that butterflies feed on in a tropical forest in Uganda, and measure the attractiveness of these fruits to the local butterfly fauna together with the role that decay plays in the attraction. These data are supplemented with feeding observations at fruit falls in the forest. Our results show that (1) fruits contain significant and variable concentrations of sugar and nitrogen, and constitute a nutritious food source for butterflies in tropical forests; (2) fruit‐feeding butterflies use cues from the fruits and fermentation products to locate their food; (3) different classes of fruit‐feeding butterflies may vary in their preferences for certain fruits, and differ in their ability to find preferred food; and (4) fruit choice is not strongly correlated with attractiveness or nutrient content. The results are discussed in the light of the evolution of food searching and life history strategies.  相似文献   

19.
Primate censuses were conducted in a mosaic of colonizing (two locations) and old-growth forests using line transect methods at the Ngogo study site, Kibale National Park, Uganda. Black and white colobus monkeys (Colobus guereza) were encountered more frequently in the colonizing forests than in the old growth forest, while chimpanzees (Pan troglodytes) were encountered more frequently in the old growth forest than in colonizing forests. Although not significant, results suggest that blue monkeys (Cercopithecus mitis) frequented colonizing forests more often than old growth forest. The encounter rates of mangabey (Lophocebus albigena), and redtail (Cercopithecus ascanius) groups were ambiguous with their density being higher in some colonizing forests but not others as compared to old-growth forest. No significant differences were detected for baboons (Papio anubis), Lhoests (Cercopithecus lhoesti), and red colobus monkeys (Piliocolobus tephroscales). The conversion of forests to farmland is one of the major problems encountered in primate conservation. This study shows that secondary forests replacing anthropogenic grasslands have the potential of supporting some primate species such as black and white colobus, redtail monkeys, and possibly blue monkeys. Therefore, such areas should not be given up but should be conserved for the benefit of primates that can survive in secondary forests; as the forests mature further, primate species that are adapted to old growth forest will colonize the area provided there is a nearby source.  相似文献   

20.
In tropical regions, many studies have focused on how vegetation and ecosystem processes recover following the abandonment of anthropogenic activities, but less attention has been given to the recovery patterns of vertebrates. Here we conduct a meta‐analysis (n = 147 studies) of amphibian, reptile, bird and mammal recovery during tropical secondary forest succession (i.e. natural regeneration). For each taxonomic group, we compared changes in species richness and compositional similarity during natural secondary succession to reference forests (mature or old growth forest). In addition, we evaluated the response of forest specialists and the change in bird and mammal functional groups during natural secondary succession in the tropical moist forest biome. Overall, species richness of all groups reached levels of the reference forests during natural secondary succession, but this was not the case for species compositional similarity. The delay in recovery of forest specialists may be the reason for the delay in recovery of species compositional similarity. Overall, vertebrate recovery increased with successional stage, but other potential predictors of diversity recovery, such as, the geographical setting (amphibian and reptile species compositional similarity recovered more rapidly on islands), rainfall (mammal species richness and compositional similarity recovered faster in regions of low rainfall), and the landscape context (amphibian, reptile and mammal species compositional similarity recovered faster in regions with more forest patches) influenced vertebrate recovery. These results demonstrate the important role of secondary forests in providing habitat for many vertebrates, but the slow recovery of species compositional similarity, forest specialists and some functional groups (e.g. insectivorous birds) highlighted the challenge of secondary forest persistence, and strongly argues for the continued protection of old growth/mature forest as habitat for forest specialists and as sources for secondary forest sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号