首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Passiflora actinia and P. elegans, two markedly parapatric species, have their southern and northern distribution limits, respectively, in the most southern part of the Brazilian Atlantic Rain Forest. Despite the fact that they are classified in different taxonomic series, previous phylogenetic studies of this genus revealed a high genetic similarity between them. The aim of the present work was to analyse in more detail their geographical range in this region of overlap, to investigate intraspecific genetic variability and phylogeographic structure, and to search for possible hybrids. METHODS: Eighty-two localities were searched for these species, and nuclear internal transcribed spacer (ITS) sequences were investigated for 32 individuals of P. actinia, 20 of P. elegans and one putative interspecific hybrid. Plastid trnL-trnF and psbA-trnH were examined for 12 plants of each species and the putative hybrid. KEY RESULTS: Both species showed a high level of intraspecific and intra-individual ITS variability. Network analysis revealed a north-south geographic gradient in their intra and interspecific relationships. Mismatch analyses suggested a recent population expansion of P. elegans. The plastid markers showed restricted variability but, together with the nuclear data, they contributed to the identification of an interspecific hybrid of intermediate morphology at the border of the distribution of these two species. Both genetic and morphological data indicate the absence of an extensive hybridization zone between these species. CONCLUSIONS: Gene flow between lineages is the possible cause for the presence of different ITS sequences within a given plant, the absence of homogenization being due to the high degree of vegetative reproduction in the two species. Differentiation of P. actinia into geographic groups and the origin of P. elegans may have been influenced by the Atlantic Forest migration towards southern Brazil. The genetic pattern of the interspecific hybrid indicates that plastid inheritance in these species is at least sometimes paternal.  相似文献   

2.
The taxonomy of the amphi‐Atlantic tree genus Carapa (Meliaceae) has long been controversial. Of the three species currently recognized in the genus, two are known to present substantial morphological variation that has been used in the past to distinguish several taxa, most of which are currently placed in synonymy. Here, a combination of field observations, univariate analyses of leaf, floral and seed characters and principal coordinate analyses of floral characters in the context of a molecular phylogenetic analysis was used to investigate the patterns of variation and delimit morphological species anew in the genus. These results support the recognition of 27 species in Carapa, of which 16 are previously described and 11 are new. In general, phylogenetically related species occurred in the same geographical area, but were morphologically distinct. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 186–221.  相似文献   

3.
The Brazilian rosewood (Dalbergia nigra) is an endangered tree endemic to the central Brazilian Atlantic Forest, one of the world''s most threatened biomes. The population diversity, phylogeographic structure and demographic history of this species were investigated using the variation in the chloroplast DNA (cpDNA) sequences of 185 individuals from 19 populations along the geographical range of the species. Fifteen haplotypes were detected in the analysis of 1297 bp from two non-coding sequences, trnV-trnM and trnL. We identified a strong genetic structure (FST=0.62, P<0.0001), with a latitudinal separation into three phylogeographic groups. The two northernmost groups showed evidence of having maintained historically larger populations than the southernmost group. Estimates of divergence times between these groups pointed to vicariance events in the Middle Pleistocene (ca. 350 000–780 000 years ago). The recurrence of past climatic changes in the central part of the Atlantic forest, with cycles of forest expansion and contraction, may have led to repeated vicariance events, resulting in the genetic differentiation of these groups. Based on comparisons among the populations of large reserves and small, disturbed fragments of the same phylogeographic group, we also found evidence of recent anthropogenic effects on genetic diversity. The results were also analysed with the aim of contributing to the conservation of D. nigra. We suggest that the three phylogeographic groups could be considered as three distinct management units. Based on the genetic diversity and uniqueness of the populations, we also indicate priority areas for conservation.  相似文献   

4.
Diglyphus isaea ( Walker 1838 ) (Hymenoptera: Eulophidae) is a primary parasitoid of agromyzid leaf miners (Diptera: Agromyzidae) and has been commercialized as a biological control agent. Diglyphus isaea occurs throughout much of the world and different populations are morphologically identical. Using nuclear ribosomal internal transcribed spacer 1 (ITS1) sequences, we examined variation among Chinese populations of D. isaea . Phylogenetic analyses combined with an analysis of sympatry indicated that D. isaea consists of at least four species in mainland China. The results imply that ITS1 is an efficient marker for identifying congeneric species of parasitic waSPS, and that cryptic species could be common in temperate and subtropical regions.  相似文献   

5.
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south‐eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent . After superimposing the present‐day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre‐ and post‐deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre‐ and post‐deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large‐scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra‐specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present‐day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra‐specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.  相似文献   

6.
7.
Stenochironomus falcifer sp. n. is described and figured based on the characters of a male adult. The species was collected in Malaise traps in the Serra Furada State Park (PAESF), in Santa Catarina State, southern Brazil. It can be separated from all other species of Stenochironomus Kieffer, 1919 Kieffer, J.J. (1919), ‘Chironomiden der Nördlichen Polarregion’, Entomologische Mitteilungen, 8, 4048. [Google Scholar] by its unique thorax pigmentation, with two dark patches on the lateral vittae, brownish postnotum and dark stripes on the scutum, and also by the combination of a narrow, parallel-sided anal point, inferior volsella with a stout apical seta, rounded posterior margin of the tergite IX and green metallic eyes.

http://zoobank.org/urn:lsid:zoobank.org:act:3646E02D-7E3F-487A-BED1-A7937AFF8040  相似文献   

8.
Aim We aim to propose validated, spatially explicit hypotheses for the late Quaternary distribution of the Brazilian Atlantic forest, and thereby provide a framework for integrating analyses of species and genetic diversity in the region. Location The Atlantic forest, stretching along the Brazilian coast. Methods We model the spatial range of the forest under three climatic scenarios (current climate, 6000 and 21,000 years ago) with BIOCLIM and MAXENT. Historically stable areas or refugia are identified as the set of grid cells for which forest presence is inferred in all models and time projections. To validate inferred refugia, we test whether our models are matched by the current distribution of the forest and by fossil pollen data. We then investigate whether the location of inferred forest refugia is consistent with current patterns of species endemism and existing phylogeographical data. Results Forest models agree with pollen records and predict a large area of historical forest stability in the central corridor (Bahia), as well as a smaller refuge (Pernambuco) along the Brazilian coast, matching current centres of endemism in multiple taxa and mtDNA diversity patterns in a subset of the species examined. Less historical stability is predicted in coastal areas south of the Doce river, which agrees with most phylogeographical studies in that region. Yet some widely distributed taxa show high endemism in the southern Atlantic forest. This may be due to limitations of the modelling approach, differences in ecology and dispersal capability, historical processes not contemplated by the current study or inadequacy of the available test data sets. Main conclusions Palaeoclimatic models predict the presence of historical forest refugia in the Atlantic rain forest and suggest spatial variation in persistence of forests through the Pleistocene, predicting patterns of biodiversity in several local taxa. The results point to the need for further studies to document genetic and species endemism in the relatively poorly known and highly impacted areas of Atlantic rain forests of north‐eastern Brazil.  相似文献   

9.
In Gracilariaceae, species identification is traditionally based on gross morphology; therefore the taxonomic status of terete individuals remains frequently problematic due to the lack of diagnostic characters to identify specimens. Different morphospecies have been recorded along the Atlantic coast of Morocco; however, no clear diagnostic characters were available to discriminate between terete species. Rapid molecular techniques have been developed recently to resolve many taxonomic problems and to re-assess the global diversity and biogeography in algae. In this study, molecular markers were used as DNA barcoding to characterise species. The sequence of the Rubisco spacer allowed identification of six species of Gracilariaceae: Gracilaria gracilis, Gracilaria dura, Gracilaria conferta, Gracilaria vermiculophylla, Gracilaria multipartita and Gracilariopsis longissima. In order to identify species with certainty, two simple and rapid methods based on the amplification of rDNA ITS and PCR-RFLP of the large subunit of the Rubisco were developed.  相似文献   

10.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

11.
Cicer L. (Leguminosae: Papilionoideae) consists of 42 species of herbaceous or semi-shrubby annuals and perennials distributed throughout the temperate zones of the Northern Hemisphere. The origin and geographical relationships of the genus are poorly understood. We studied the geographical diversification and phylogenetic relationships of Cicer using DNA sequence data sampled from two plastid regions, trnK / matK and trnS - trnG , and two nuclear regions, the internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of nuclear ribosomal DNA, from 30 species. The results from the phylogenetic analyses of combined nuclear and chloroplast sequence data revealed four well-supported geographical groups: a Middle Eastern group, a West-Central Asian group, an Aegean–Mediterranean group, and an African group. Age estimates for Cicer based on methods that do not assume a molecular clock (for example, penalized likelihood) demonstrate that the genus has a Mediterranean origin with considerable diversification in the Miocene/Pliocene epochs. Geological events, such as mountain orogenesis and environmental changes, are major factors for the dispersal of Cicer species. The early divergence of African species and their geographically distinct region in the genus suggest a broader distribution pattern of the genus in the past than at present.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 154 , 175–186.  相似文献   

12.
Myrtaceae are one of the most species‐rich families of flowering plants in the Neotropics. They include several complex genera and species; Hexachlamys is one of the complex genera. It has not been recognized as a distinct genus and has been included in Eugenia, based on morphological grounds. Therefore, molecular systematic studies may be useful to understand and to help to solve these relationships. Here, we performed a molecular phylogenetic analysis using plastid and nuclear data in order to check the inclusion of Hexachlamys in Eugenia. Plastid (accD, rpoB, rpoC1, trnH‐psbA) and nuclear (ITS2) sequence data were analysed using Bayesian and maximum parsimony methods. The trees constructed using ITS2 and trnH‐psbA were the best able to resolve the relationships between species and genera, revealing the non‐monophyly of Hexachlamys. The molecular phylogenetic analyses were in agreement with previous morphological revisions that have included Hexachlamys in Eugenia. These results reinforce the importance of uniting knowledge and strategies to understand better issues of delimitation of genera and species in groups of plants with taxonomic problems. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 532–543.  相似文献   

13.
Climate change is altering the world’s marine biota, in particular, their geographic distribution. Sargassum species are foundation species that play critical ecological roles in tropical benthic communities, providing food, habitat heterogeneity and shelter for a wide range of marine organisms. To understand how future changes in abiotic variables could affect the distribution of Sargassum species along the Western Atlantic Ocean, we performed Ecological Niche Models (ENM) for 12 benthic Sargassum species. We projected present and future habitat suitability distributions under the RCP 4.5 and RCP 8.5 IPCC scenarios. We fit ENM and created ensembles from different algorithms. Our results predict changes in species latitudinal range (niche suitability) in the order of 0.5˚ to 8.1˚ northward, and 0˚ to 5.5˚ southward. Six species are likely to reduce their suitability area from 10% to 80%, while other six species are likely to expand their suitability area from 4% to 168%. Overall, changes in suitability area and latitudinal ranges will increase at larger latitudes for most species while suitability areas will decrease at lower latitudes for half of the species. This pattern is consistent with the expected tropicalization of temperate latitudes following global warming. Such changes can produce considerable losses in ecosystem services maintained by healthy Sargassum beds, particularly at lower latitudes. Our findings highlight the need to improve Sargassum conservation policies and management strategies to avoid the negative effects caused by losses in Sargassum forests.  相似文献   

14.
The effects of global glaciations on the distribution of organisms is an essential element of many diversification models. However, the empirical evidence supporting this idea is mixed, in particular with respect to explaining tropical forest evolution. In the present study, we evaluated the impacts of range shifts associated with Pleistocene global glacial cycles on the evolution of tropical forests. In particular, we tested the predictions: (1) that population genetic structure increases with fragmentation variation between the present and the Last Glacial Maximum (LGM) and also (2) with geographical range instability; and (3) that genetic diversity increases with range stability and (4) decreases with fragmentation variation between periods. To address our predictions, we studied population genetic structures and modelled present and past distributions of 15 Atlantic Forest (AF) endemic birds. Afterwards, we evaluated the relationship of population genetic parameters with metrics of species range shifts between the present and the LGM. We found that geographical ranges of AF birds changed in concert with Pleistocene glacial cycles but, unexpectedly, our findings suggest the novel idea that ranges during glacial maxima were slightly larger on average, as well as equally fragmented and displaced from the interglacial ranges. Our findings suggest that range shifts over the late Pleistocene impacted on the diversification of forest organisms, although they did not show that those range shifts had a strong effect. We found that a combination of fragmentation variation across time, small current range size, and range stability increased population genetic structure. However, neither fragmentation, nor range stability affected genetic diversity. Our study showed that evolutionary responses to range shifts across AF birds have a high variance, which could explain the mixed support given by single‐species studies to the action of Pleistocene range shifts on population evolution.  相似文献   

15.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   

16.
We performed a cluster analysis of human and animal pathogenic Microsporum species and their teleomorphic states, Arthroderma species, including A. otae-related species (M. canis, M. audouinii, M. distortum, M. equinum, M. langeronii, and M. ferrugineum) and M. gypseum complex (A. fulvum, A. gypseum, and A. incurvatum) using DNA sequences of nuclear ribosomal internal transcribed spacer 1 (ITS1). The dendrogram showed the members of A. otae-related species to be monophyletic and to construct an extremely closely related cluster with a long horizontal branch. This ITS1-homologous group of A. otae was organized in 6 unique genotypes, while sequences of the members of the ITS1-homologous group of M. gypseum complex are more diverse. This ITS1-based database of Microsporum species and their teleomorphic states will provide a useful and reliable species identification system: it is time-saving (takes two to three days), accurate and applicable even to strains with atypical morphological features or in a non-culturable state.  相似文献   

17.
Variation within the internal transcribed spacer (ITS) of the ribosomal RNA gene of 15 isolates representing seven European Armillaria species, was examined by sequencing of the PCR-amplified products. The analysis of an 744-bp region showed that the 5.8S gene appeared to be highly conserved in the 15 isolates and in other Basidiomycetes and Ascomycetes, whereas ITS1 and especially ITS2 spacers exhibited polymorphisms due to base substitutions, insertions or deletions of up to eight nucleotides. An initial dendrogram for the full sequence was drawn using cluster analysis (UPGMA), and a tree was constructed using the maximum parsimony method. Both methods indicated that the isolates could be divided into four major groups. One group, consisting of A. ectypa , was distinct from all the other species. Examination of the other groups indicated that A. tabescens and A. mellea were in a separated cluster, with a significant variation between the two isolates of the latter species. A. gallica and A. cepistipes constituted another closely related group distinguishable from A. ostoyae and A. borealis , these latter two species exhibiting the highest similarity. The results are consistent with, and discussed in regard to, the relationships estimated previously by pairing tests, morphological and physiological comparisons, as well as by restriction fragment length polymorphism of the rDNA.  相似文献   

18.
DNA sequence variation of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from Arabis holboellii, A. drummondii, and its putative hybrid A. divaricarpa was analyzed to study hybrid speciation in a species system geographically covering nearly the entire North American continent. Based on molecular systematics the investigated species are better combined under the genus Boechera. Multiple intraindividual ITS copies were detected in numerous accessions of A. divaricarpa, and, to a minor extent, in the parental taxa. Comparative phylogenetic analysis demonstrates that reticulate evolution is common. Consequently, concerted evolution of ITS regions resulted in different types of ITS fragments not only in hybrid populations but also in one of the parental taxa, A. holboellii. Hybrid formation often occurred independently at different sites and at different times, which is reflected by ITS copies resampling the original parental sequence variation in different ways. Some biogeographic structuring of genetic diversity is apparent and mirrors postglacial migration routes. Hybridization, reticulation, and apomixis are assumed to be the major forces driving speciation processes in this species complex. Analysis of conserved regions and secondary structures of the ITS region provided no evidence that, in this system, hybrid ITS evolution is predominantly driven in a particular direction. However, two regions in the ITS1 and ITS2, respectively, show higher mutation rates than expected from outgroup comparisons. Strong evidence for the occurrence of apomixis in A. holboellii and A. divaricarpa has come from pollen size measurements and estimations of pollen quality, which favor the hypothesis that A. drummondii served as paternal hybridization partner more frequently than A. holboellii.  相似文献   

19.
The Brazilian Atlantic Forest is one of the world's major biodiversity hotspots and is threatened by a severe habitat loss. Yet little is known about the processes that originated its remarkable richness of endemic species. Here we present results of a large-scale survey of the genetic variation at the mitochondrial cytochrome b gene of the pitviper, jararaca lancehead (Bothrops jararaca), and two closely related insular species (Bothrops insularis and Bothrops alcatraz), endemic of this region. Phylogenetic and network analyses revealed the existence of two well-supported clades, exhibiting a southern and a northern distribution. The divergence time of these two phylogroups was estimated at 3.8 million years ago, in the Pliocene, a period of intense climatic changes and frequent fragmentation of the tropical rainforest. Our data also suggest that the two groups underwent a large size expansion between 50,000 and 100,000 years ago. However, the southern group showed a more marked signal of population size fluctuation than the northern group, corroborating evidences that southern forests may have suffered a more pronounced reduction in area in the late Pleistocene. The insular species B. alcatraz and B. insularis presented very low diversity, each one sharing haplotypes with mainland individuals placed in different subclades. Despite their marked morphological and behavioural uniqueness, these two insular species seem to have originated very recently and most likely from distinct costal B. jararaca populations, possibly associated with late Pleistocene or Holocene sea level fluctuations.  相似文献   

20.
Fusarium species causing wilt diseases in different plants were characterised by comparing nonpathogenic and different pathogenic species using rDNA RFLP analysis. The ITS (internal transcribed spacer) region of 12 isolates belonging to the section Elegans, Laseola, Mortiella, Discolor, Gibbosum, Lateritium and Sporotrichiella were amplified by universal ITS primers (ITS-1 and ITS-4) using polymerase chain reaction (PCR). Amplified products, which ranged from 522 to 565 bp were obtained from all 12 Fusarium isolates. The amplified products were digested with seven restriction enzymes, and restriction fragment length polymorphism (RFLP) patterns were analysed. A dendrogram derived from PCR-RFLP analysis of the rDNA region divided the Fusarium isolates into three major groups. Assessment of molecular variability based on rDNA RFLP clearly indicated that Fusarium species are heterogeneous and most of the forma speciales have close evolutionary relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号