首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendrobium is the largest genus of tropical epiphytic orchid, some of which are traditional Chinese medicinal plants. The therapeutic components varied significantly among species. Endophytic microbes (fungi) hidden in medicinal plants may play an important effect on the overall quality of herb. Investigation of fungal composition in host plants is the first step toward elucidating the relationship endophyte-therapeutic content of herbal medicine. In this study, 401 culturable fungal endophytes were isolated and identified from 10 species of medicinal Dendrobium based on morphological and molecular techniques. The results showed that endophytic fungi from Dendrobium plants exhibited high biodiversity (37 genera, about 80 species). Acremonium, Alternaria, Ampelomyces, Bionectria, Cladosporium, Colletotrichum, Fusarium, Verticillium and Xylaria were the dominant fungal endophytes. Tropical epiphytic orchids appear to vary in degree of host specificity in their endophytic fungi.  相似文献   

2.
Fungal Epiphytes and Endophytes of Coffee Leaves (Coffea arabica)   总被引:1,自引:0,他引:1  
Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world’s most valuable crops.  相似文献   

3.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

4.
The diversity, composition, and host recurrence of endophytic fungi in the Xylariaceae were compared in subtropical (ST), cool temperate (CT), and subboreal forests (SB) in Japan based on the 28S ribosomal DNA sequences from fungal isolates. A total of 610 isolates were obtained from the leaves of 167 tree species in three sites, which were classified into 42 operational taxonomic units (OTUs) at the 99 % similarity level of the 28S rDNA sequence. ST, CT, and SB yielded 31, 13, and three OTUs, respectively. The OTU richness, diversity, and evenness of fungal communities were in the order: ST > CT > SB. The 42 OTUs were assigned to nine genera in the Xylariaceae: Xylaria, Annulohypoxylon, Anthostomella, Biscogniauxia, Nemania, Hypoxylon, Muscodor, Daldinia, and Rosellinia. Xylarioid isolates in the subfamily Xylarioideae outnumbered Hypoxyloid isolates in the subfamily Hypoxyloideae in ST and CT, whereas the opposite was found in SB. Sørensen’s quotient of similarity was generally low between the three sites. Host recurrence of fungal OTUs was evaluated with the degree of specialization of interaction network between xylariaceous endophytes and plant species and compared between the three sites. We found that the networks in the three sites showed a significantly higher degree of specialization than simulated networks, where partners were associated randomly. Permutational multivariate analyses of variance indicated that plant family and leaf trait significantly affected the OTU composition in ST, which can account for the specialization of interaction network and host recurrence of xylariaceous endophytes.  相似文献   

5.
To test the hypothesis that xylariaceous endophytes were ubiquitous on live and dead leaves of various tree species in the field, xylariaceous fungi were isolated from live leaves and bleached and nonbleached portions of dead leaves of a total of 94 tree species in a cool temperate forest in Japan. The biodiversity of xylariaceous endophytes was evaluated as the richness of operational taxonomic units (OTUs) determined by phylogenetic analysis of the nucleotide sequence of the D1/D2 region of the LSU rDNA of fungal isolates. A total of 326 isolates of xylariaceous fungi were isolated from live and dead leaves and classified into 15 OTUs. The three major OTUs, Xylaria sp.1, Nemania sp., and Biscogniauxia sp., accounted for 94% (308 isolates) of the total number of isolates, and were isolated from various live and dead leaves. Xylaria sp.1 was frequently encountered on bleached portions (which were produced due to the selective decomposition of lignin) of dead leaves of broad-leaved deciduous tree species. The results suggest that xylariaceous endophytes did not show host specificity and had a saprobic phase on dead leaves in their life cycles and that Xylaria sp.1 was capable of decomposing lignin in the field conditions.  相似文献   

6.
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.  相似文献   

7.
湖北烟草内生真菌生物多样性和种群结构分析   总被引:1,自引:0,他引:1  
【目的】研究传统药用植物烟草(Nicotiana tabacum L.)内生真菌的丰富度,揭示其种群多样性和群落结构,为烟草内生真菌资源的有效利用奠定基础。【方法】采用组织分离法进行烟草内生真菌的分离,通过形态学和分子生物学相结合的方法进行菌株分类鉴定,以香农多样性指数及相对分离频率反映内生真菌物种多样性及分布规律。【结果】从不同组织部位、不同生长时期、不同海拔样地的健康烟草中共分离获得539株内生真菌,根据r DNA-ITS系统发育分析鉴定为31属73种,香农多样性指数为2.78,曲霉属Aspergillus和镰孢属Fusarium为优势菌群,其相对分离频率分别为22.63%和12.99%。其分布规律表现为茎部内生真菌的多样性高于叶部和根部;随着生育期的延长,内生真菌多样性逐步增多;随着海拔高度升高,内生真菌的种类和数量呈现降低的趋势。【结论】烟草内生真菌具有丰富的生物多样性,其分布表现出组织、生长时期、海拔高度专化性。阐明内生真菌在烟草中的分布规律,可以为烟草内生真菌在农业生产领域的开发应用提供科学依据。  相似文献   

8.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Tree fruiting phenology in Kalinzu Forest, Uganda   总被引:2,自引:1,他引:1  
The spatial and temporal variations in species composition and abundance of trees that fruited in mechanically logged, intensively pit‐sawn and essentially undisturbed forest areas in Kalinzu Forest (0°17′S, 0°30′S and 30°00′, 30°07′E) were assessed. The duration and frequency of fruiting episodes of selected pioneer, understorey and canopy tree species were also determined. These phenology aspects were monitored for 18 months (between February 1997 and July 1998) in 99 plots, each 20 m × 20 m in size. Eighty species consisting of 1489 trees fruited during the study. Most of the species were recorded in the undisturbed forest area and least in the mechanically logged areas. Monthly number of individuals and species that fruited in each forest condition were significantly related to monthly rainfall. Two pioneer species (Musanga leo‐errerae and Trema orientalis), one sub‐canopy (Funtumia africana) and canopy (Parinari excelsa) species had extended fruiting phases (>5 months). Two understorey species (Oxyancius speciosus and Tabernaemontana spp.) had an extended phase while the third (Teclea nobilis) had a short (≤5 months) fruiting phase. Of the selected species, only Strombosia scheffleri (a sub‐canopy species) and P. excelsa had more than one fruiting episode.  相似文献   

10.
Sixteen fungal taxa were isolated from 2400 leaf fragments of mature Musa acuminata plants collected from three different localities in São Paulo State, Brazil. The most frequently found endophytic fungi were Xylaria sp., Colletotrichum musae and Cordana musae. The standard distribution of endophytes was similar in the three localities. Spontaneous resistant mutants to the fungicides thiabendazole (thi-1) and benomyl (ben-5), were obtained from Colletotrichum musae wild-type isolates. Equal amounts of conidia mixtures of combinations of wild-types and mutants were reintroduced in axenic banana plantlets derived from tissue culture; thi-1 showed a selective advantage when compared to both wild-types used. For ben-5, no significant difference was found. Results showed that wild-types and spontaneous mutants of endophytic fungi as Colletotrichum musae, can be successfully reintroduced in plantlets derived from tissue culture.  相似文献   

11.
Leaf-inhabiting endophytic fungi of Fraxinus excelsior growing in a floodplain forest were isolated during 2008 to investigate vertical community structure, species richness and seasonal variation. The analysis of 848 fungal endophytes from 213 leaves resulted in 50 different species. In the understorey, infection density and species richness were higher than in the crowns of mature trees throughout the whole vegetation period. Within tree crowns, sun-exposed leaves of the top canopy exhibited the lowest infection rates. Most species were rare or absent in spring and in the light crowns and frequent in autumn and the understorey. However, some species, especially the two most frequent, Alternaria infectoria and A. alternata, deviated from these patterns. Young leaves were nearly free of endophytes. Apparently, the subsequent infection and establishment of fungi strongly depend on microclimatic parameters and leaf characters, which create highly variable spatial and temporal colonisation patterns within an individual tree.  相似文献   

12.
Eucalyptus citriodora Hook, is frequently cultivated tree in India for its wood and medicinal usages. The endophytic and epiphytic fungi were estimated from healthy leaves of E. citriodora growing in the premise of Banaras Hindu University, Varanasi, India. A total of 33 fungal species were isolated from leaf segments. Of 33 taxa, 20 were recorded as endophytes, while 22 as epiphytes. Nine, out of 33 species were found to be common in leaf tissues and surfaces (Alternaria alternata, Aspergillus fumigatus, A. terreus, Cladosporium cladosporioides, Drechslera rostrata, Humicola grisea, Nigrospora oryzae, Penicillium cristata, and Pestalotia sp.). Out of 478 fungal isolates, 279 were epiphytic while only 199 were endophytic. Most isolates were anamorphic filamentous fungi which often don’t produce sexual spores. The Sorensen’s index of similarity between endophytes and epiphytes (leaf surface colonizers) was found to be at 0.300. Diversity index of fungal species was higher in endophytes than epiphytes. The frequency of colonization differs greatly in both myco-populations. Cladosporium cladosporioides (26%) was dominant species on leaf surfaces while Botrytis cinerea (10.5%) was dominant in leaf tissues. Out of 16 endophytic isolates evaluated for antagonistic test, 8 (50%) gave the antagonistic activity against variety of fungi representing pathogens to both humans and plants.  相似文献   

13.
Leaf-cutting ants of the genera Acromyrmex and Atta forage vegetation for incorporation into their mutualistic fungal gardens. However, the presence of certain endophytic fungi in this predominantly leaf-based material could affect the fungal garden and thus the choice of material by the ants. The present study was conducted to document the endophytic fungal communities occurring in the vegetation being transported by workers of Atta laevigata into their nests and to compare this community structure with that of the vegetative material subsequently rejected from the nests. We found considerable diversity in the fungi isolated. Acremonium, Cylindrocladium, Drechslera, Epicoccum, Fusarium, Trichoderma, Ulocladium and two unidentified morphospecies were significantly more common in rejected compared with foraged material, and some of these genera include mycoparasites, which could represent a threat to the fungal gardens. Conversely, Colletotrichum, Pestalotiopsis, Phomopsis, Xylaria and an unidentified morphospecies were more common in carried compared with rejected material. The possibility that ants have a ‘quality-control’ mechanism based on the presence of antagonistic fungal endophytes is discussed, as is the potential use of these fungi as biocontrol agents against Attini pests.  相似文献   

14.
The factors that control the assembly and composition of endophyte communities across plant hosts remains poorly understood. This is especially true for endophyte communities inhabiting inner tree bark, one of the least studied components of the plant microbiome. Here, we test the hypothesis that bark of different tree species acts as an environmental filter structuring endophyte communities, as well as the alternative hypothesis, that bark acts as a passive reservoir that accumulates a diverse assemblage of spores and latent fungal life stages. We develop a means of extracting high‐quality DNA from surface sterilized tree bark to compile the first culture‐independent study of inner bark fungal communities. We sampled a total of 120 trees, spanning five dominant overstorey species across multiple sites in a mixed temperate hardwood forest. We find that each of the five tree species harbour unique assemblages of inner bark fungi and that angiosperm and gymnosperm hosts harbour significantly different fungal communities. Chemical components of tree bark (pH, total phenolic content) structure some of the differences detected among fungal communities residing in particular tree species. Inner bark fungal communities were highly diverse (mean of 117–171 operational taxonomic units per tree) and dominated by a range of Ascomycete fungi living asymptomatically as putative endophytes. Together, our evidence supports the hypothesis that tree bark acts as an environmental filter structuring inner bark fungal communities. The role of these potentially ubiquitous and plant‐specific fungal communities remains uncertain and merits further study.  相似文献   

15.
Conversion of diverse native forests to tree monocultures remains an ongoing, worldwide threat to biodiversity. Although the effects of forest conversion have been studied in a wide range of taxonomic groups, the effects on macrofungal communities remain poorly understood. We sampled macrofungal fruiting bodies in the National Forest of São Francisco de Paula in Southern Brazil over 12 months in four different forest habitats: native Araucaria angustifolia forest, A. angustifolia plantation, Pinus taeda or P. elliottii plantation, and Eucalyptus saligna plantation. The distribution of macrofungal species in different functional groups varied among habitats: the macrofungal species composition of the A. angustifolia plantation was more similar to that of the native forest, while the exotic Pinus or Eucalyptus plantations were less similar to the native forest. The conversion of native forest to exotic tree plantations reduced the number of macrofungal decomposer species, probably due to changes in substrate availability and quality. We conclude that fungal diversity and ecosystem functionality require the preservation of native, mature forests and suggest a shift of Brazilian forestry guidelines to encourage the plantations of native species instead of exotics.  相似文献   

16.
An ecological approach was used to investigate the relationship between diversity of soil fungal communities and soil‐borne pathogen inoculum in a potato growing area of northern Italy affected by yield decline. The study was performed in 14 sites with the same tillage management practices: 10 named ‘potato sites’, that for many years had been intensely cultivated with potatoes, and 4 named ‘rotation sites’, subject to a 4‐year rotation without potatoes or any recurrent crop for many years. Fungal communities were recorded using conventional (soil fungi by plate count and endophytic fungi as infection frequency on pot‐grown potato plant roots in soil samples) and molecular approaches [Basidiomycetes and Ascomycetes with specific and denaturing gradient gel electrophoresis (DGGE) analysis]. Diversity of fungal communities in potato sites was significantly lower than that in rotation sites. In addition, fungal communities in rotation sites showed lower Berger–Parker dominance than those in the potato sites, suggesting that rotation sites had a higher diversity as well as a better fungal community balance than potato sites. The ANalysis Of SIMilarity test of soil fungi and root endophytic fungi revealed that the two cropping systems differed significantly for species composition. Root endophytic fungal communities showed a greater ability to colonise potato roots in soil samples from potato sites than those from rotation sites. Moreover, the majority of endophytic root fungal community species in potato sites belonged to the potato root rot complex and storage disease (Colletotrichum coccodes, Fusarium solani and Fusarium oxysporum), while those in rotation sites were mainly ubiquitous or saprobic fungi. Soil rDNA analyses showed that Ascomycetes were much more frequent than Basidiomycetes in all the soils examined. DGGE analysis, with the Ascomycete‐specific primer (ITS1F/ITS4A), did not reveal distinctions between the communities found at the potato and rotation sites, although the same analysis showed differences between the communities of Basidiomycetes (specific primer ITS1F/ITS4B). These findings showed that recurrent potato cropping affected diversity and composition of soil fungal communities and induced a shift in specialisation of the endophytic fungi towards potato.  相似文献   

17.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

18.
Sedentary insect herbivores, such as gallformers and leafminers, are usually non-randomly distributed among and within host plants. Dispersion of these insects is largely a function of female oviposition choice. In field experiments and observations spanning two growing seasons, we tested the hypothesis that selective oviposition on individual leaves within trees by the dominant herbivore of Emory oak, the monophagous leaf-miner Cameraria sp. nov., is determined by the probability of colonization by endophytic fungi. These fungi are alleged to act as plant mutualists by deterring, killing, or inhibiting the growth of insect herbivores. We found that leaves selected by females for oviposition and paired, unmined leaves were equally likely to be colonized by fungal endophytes. Furthermore, condensed and hydrolyzable tannin levels, purported inhibitors of fungal infection, and protein content did not vary between leaves selected by females and unmined leaves, or between leaves with and without endophyte infections. We conclude that female Cameraria do not choose leaves within trees for oviposition on the basis of propensity for endophytic fungal infection or on phytochemical parameters that might indicate probability of future infections. At this spatial scale at least, fungal endophytes do not explain the highly aggregated distribution of Cameraria among leaves and associated costs in terms of increased larval mortality. Fungal endophytes may, nevertheless, affect leafminer dispersion and abundance at larger spatial scales, such as host plant populations or species. We did find, however, that the amount of mining activity on leaves is positively associated with increased colonization by fungal endophytes. We suggest that mining activity increases endophyte fungal infections by facilitating spore germination and hyphal penetration into the leaf or by altering leaf phytochemistry. The facilitation of endophyte colonization by leafmining activity coupled with the lack of predictability of endophyte infections based on leaf phytochemistry and almost 100% infectivity of all oak leaves during sporadic wet years may prevent female leafminers from discriminating leaves for oviposition on the basis of current or future levels of endophytes in leaves.  相似文献   

19.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

20.
Endophytic fungi of healthy twig tissues act as dominant primary colonizers of twig litters and are exposed to the attacks of saprobic secondary colonizers. In the present study, we examined the effect of interspecific interactions on the decay rate of twigs in laboratory experiments using two endophytic ascomycetes (Phomopsis sp. and Xylaria sp.) and two saprobic basidiomycetes (Mycena polygramma and Phanerochaete filamentosa) on twigs of Japanese beech (Fagus crenata) as a model system. Both endophytes were defensive against two saprobes on 2% malt agar, and were not replaced by the saprobes in the twigs during the incubation period. However, inoculation of the saprobes reduced the mass loss of twig components (acid-unhydrolyzable residue (AUR), holocellulose, soluble carbohydrate, and polyphenol). Especially when the twigs previously inoculated with Xylaria sp. or Phomopsis sp. were successively inoculated with M. polygramma the net weight of AUR increased, which was probably due to the synthesized melanin in hyphae of the endophytes. Our findings indicate that interspecific interactions between endophytic and saprobic fungi do affect the total mass of humic substances produced during the litter decay process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号