首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

2.
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.  相似文献   

3.
Aim Building on a substantial literature addressing the fire responses of woody plants, particularly under mediterranean climates, we assess the extent to which fire persistence traits can be used to predict vegetation responses to fire regime changes in fire‐prone arid and savanna landscape settings. Location Australia, applying data from arid central to monsoonal northern regions (11–26° S, 129–138° E). Methods With reference to a substantial sub‐continental floristics dataset, we first assigned the fire response (obligate seeder, resprouter) and seedbank persistence (transient, dormant) of rapid and longer‐maturing (> 3 years) woody taxa. Using logistic regression, we then modelled the proportions of taxa possessing these traits as a function of mean annual rainfall (highly correlated with fire frequency) and terrain roughness (a measure of topographic variability) in 0.25° × 0.25° and 1° × 1° grid cells. Separate assessments were undertaken with datasets for 1264 sclerophyll and 236 rain forest taxa. Results This woody flora is characterized by taxa exhibiting mostly resprouting and dormant seedbank traits that promote site persistence. While numbers of obligate seeder and resprouter taxa were related positively to both rainfall and roughness, the relative abundance of both sclerophyll and rain forest obligate seeders decreased significantly with rainfall. The relative abundance of sclerophyll (especially long‐lived) obligate seeders alone increased with topographic roughness. The proportion of taxa with transient seedbanks increased with rainfall in resprouters generally, and in rain forest obligate seeders alone. Main conclusions We find that resprouters are favoured on more productive, fire‐prone sites, and obligate seeders are favoured in less productive, more fire‐protected settings. Seedbank persistence responses are more variable. These findings concur generally with theoretical constructs, and support comparable assessments in Australian and other fire‐prone systems ranging from mediterranean to boreal environments. Our observations illustrate that resprouting and obligate seeding syndromes, but not necessarily seedbank persistence, are useful predictors of vegetation responses to changing fire regime conditions at large landscape scales.  相似文献   

4.
Concentrations of starch in roots of seeder species of Erica from the Cape Floristic Region, South Africa were found to be considerably less than in resprouters. Shoot starch was highly variable but mean values were similar in both seeder and resprouter species of Erica . Three distinct patterns of starch storage in roots were recognized. All seeder species fell within definitions of Categories 1 (narrow major and minor parenchymatous rays, one to two cells wide with no inter-ray storage) or 2 (thick major rays up to seven cells wide and thin minor rays with small amounts of inter-ray storage) whereas resprouter species were consistently within Categories 2 or 3 (broad major and minor rays, up to eight cells wide and conspicuous inter-ray starch storage). Results are discussed in light of similar studies of the related Epacridaceae. 'Mixed' species (i.e. with seeder or resprouter individuals present, often in distinct populations) were always classified as belonging to Category 2. Studies of populations of three 'mixed' species confirmed that seeder forms had consistently lower amounts of root starch than resprouters. Rays of xylem parenchyma were the main sites for starch storage in roots of both seeders and resprouters and greater proportions of cross-sectional area of roots were consistently devoted to such storage tissues in resprouter forms of the three 'mixed' species. Analyses of a number of seeder and resprouter Erica coccinea populations showed that differences in amounts of realised and potential root starch storage are best explained by the effect of regeneration behaviour rather than by among-population variability.  相似文献   

5.
The genus Erica L., with more than 600 species, and a high number of endemics, represents the most remarkable example of floristic diversity in the Cape Floristic Region (CFR). It is largely confined to nutrient-poor, acidic, sandy soils, being one of the most characteristic element of fynbos. The ability to survive fires, resprouting from a lignotuber, is a common trait among Euro-mediterranean Erica species. In contrast, resprouting is fairly uncommon among ericas in the CFR (less than 10%). Most of them are killed by fire, regenerating only but readily by seed germination. An extensive survey on the resprouting ability of South African Erica species was carried out and the pattern of geographical distribution of resprouters and seeders in the CFR was determined. The geographical distribution of these two regeneration classes was related to a climatic gradient of seasonality along the CFR. A pattern of higher proportions of resprouter species towards the mediterranean, strongly seasonal northwestern CFR and the non-seasonal eastern CFR and summer rainfall area outside the CFR was identified. The number of resprouter species reaches a maximum in the eastern CFR and is lower in the southwestern CFR despite the overall higher concentration of species in this subregion. Summer drought strongly influences the effectiveness of post-fire regeneration and growth (i.e. new recruits plus survivors) of Erica species, and is the major selective force accounting for the pattern of distribution of seeders and resprouters in the CFR. A mild mediterranean climate with reliable autumn-winter rains and a short summer drought, typical of the mountain areas of the southwestern CFR, favours recruitment of seeders but hampers recruitment of resprouters. Resprouter species persist and become dominant under harsh conditions for recruitment (severe summer drought) and would coexist with seeders under situations of no summer stress. Diversification is associated with seeder lineages. Hence, number of seeder species will be higher than number of resprouters, especially in the southwestern CFR, where favourable conditions for recruitment allow a massive concentration of seeder species, many of them narrow endemics.  相似文献   

6.
Summary In a mature, even aged stand of mixed chaparral, Rhus laurina (facultative resprouter) had consistently higher water potentials and deeper roots than Ceanothus spinosus (facultative resprouter) and Ceanothus megacarpus (obligate seeder). For two years following a wildfire, the same stand of chaparral had resprouts with higher survivorships, predawn water potentials, stomatal conductances, photosynthetic rates and shoot elongation rates than seedlings. Supplemental irrigation of seedlings during summer months removed differences between resprouts and seedlings suggesting that the cause of such differences was limited water availability to the shoot tissues of seedlings. After two years of postfire regrowth, mean seedling survivorship for the obligate seeder (C. megacarpus) was 42%, whereas seedling survivorship for facultative resprouters was only 18% (C. spinosus) and 0.01% (R. laurina). Our results are consistent with the hypothesis that lack of resprouting ability among obligate seeders is offset by an enhanced ability to establish seedlings after wildfire, allowing obligate seeders to maintain themselves in mixed populations through many fire cycles.  相似文献   

7.
Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant‐response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire‐sensitive) and resprouter (fire‐resistant) populations of the fynbos species Erica coccinea. We found higher within‐population genetic diversity and higher among‐population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos.  相似文献   

8.
In fire-prone ecosystems, plants for the most part persist via either soil-stored seed banks (seeders) or below-ground storage structures (resprouters). Given their greater allocation of resources above ground to growth and reproduction, seeders are likely to have a higher nutrient requirement than resprouters. This may result in discernable differences in habitat nutrition and leaf morphology. These differences are probably accentuated in Cape legumes given their poor adaptation to low-P soils. It was hypothesized that legume seeders occupy habitats with greater fertility and possess larger, less sclerophyllous leaves than resprouters. Site nutrition and leaf morphologies were compared between seeders and resprouters in the genera Otholobium and Psoralea. There were no differences in leaf morphology between seeders and resprouters. Seeders sites had a higher total [N], exchangeable [Ca] and [Mg], and CEC, but lower [Fe] than resprouters. Only within Otholobium, did seeder sites have a higher Bray II [P]. This genus-specific variation in available P is probably a consequence of greater variation in soil type and precipitation between seeders and resprouters. Conversely, niche construction may contribute to the differences in soil fertility between seeders and resprouters in Psoralea. Thus, our data showed a general tendency for seeders to inhabit more fertile sites than resprouters. Caution is required, however, in generalizing these results, as our data indicate a difference in factors affecting soil nutrient availability between legume genera. Changes in soil fertility post-fire may limit legume persistence beyond the early stages of succession.  相似文献   

9.
Banksia serrata and Isopogon anemonifolius are serotinous resprouters (single-stemmed tree, multi-stemmed shrub, respectively) found in forests within the Sydney region. Studies were conducted to predict the population dynamics of these species. Seed production and survival and the accumulation of seed-bank within cones were estimated in relation to time since fire. Emergence, survival and development of lignotubers were measured in young juveniles and the time taken to reach adulthood was estimated. This information and published data on survival were used to estimate the amount of recruitment of adults and juveniles necessary for stands to remain in a stable state under frequent (<16 years), high and low intensity fire regimes. The effects of longer intervals (up to 80 years) between fires were also estimated. It was predicted that B. serrata populations will decline in numbers when the interval between high intensity fires is <9 years, while under low intensity fires the critical interval was 12–13 years. In I. anemonifolius the predicted intervals were 14 and 16 years, respectively. When fires are timed so that maximum seed-bank is available (about 30 year interval), it is unlikely that resprouters will dominate communities because the seed-banks and rates of growth of seedlings of obligate seeder shrubs are greater than these resprouters. Populations of these resprouters may be more able to persist than obligate seeders when the fire frequency is either very high (<6 years) or low (>50years), though the density of resprouter populations may slowly decline under such fire regimes.  相似文献   

10.
The ancient Gondwanan family Proteaceae has its greatest speciation in fire‐prone environments of Australia. Fire response is either by seedling recruitment from parent plants that succumb to fire (obligate seeders), or survival and resprouting from protected buds (resprouters). Starch is the main source of energy for resprouting and in roots is restricted to parenchyma tissue. This study compared the size and distribution of storage parenchyma and the magnitude of starch reserves in roots of several proteaceous species from different genera in relation to their fire response and taxonomy. Cross‐sections (2 μm) of roots of 51 resprouter and 42 seeder species from 12 genera were stained for starch. Areas of cortex and ray parenchyma along with starch grain density were measured using image analysis software (Assess 2.0) and comparable samples of root tissue were assayed chemically for starch. Starch, where present, predominated in ray and cortex tissue with a greater percentage in resprouters (13.4 ± 1.03) than seeders (1.8 ± 0.26); these results correlated significantly with the chemical assay for starch (r = 0.93, P < 0.0001). Resprouters also had more storage parenchyma (56.9 ± 1.72%) than seeders (41.9 ± 1.91%) mostly due to broader rays (17.5 ± 1.22%) compared with seeders (8.2 ± 0.16%). Percentage of cortex tissue was similar for seeders and resprouters (39.4 ± 2.24 and 33.7 ± 2.04 respectively). Anatomical preferences for storage site were consistent within genera and broad suprageneric groupings. This study shows that histological analysis of root starch is a reliable predictor of resprouting capacity in Proteaceae and that patterns of storage tissue within genera, together with the persistence of parenchyma devoid of starch in seeders, are consistent with response to fire and suggests homoplastic evolution of this response within the family.  相似文献   

11.
Enriched genomic libraries were used to isolate and characterize dinucleotide microsatellite loci in Erica coccinea, a South African Cape fynbos heath species with distinct resprouter and seeder populations. Microsatellites were required to investigate the effect of the contrasting demographic pattern driven by these two post-fire responses in the population genetic structure of seeder and resprouter forms within this species. Eight microsatellite loci were characterised and amplified a total of 106 alleles in 2 samples each of 30 individuals from 1 resprouter and 1 seeder population. Mean allele numbers were 7.88 and 11.0 for the resprouter and seeder population, respectively. Both populations showed similar average observed and expected heterozygosity levels, H O(resprouter) = 0.683, H O(seeder) = 0.696; H E(resprouter) = 0.726, H E(seeder) = 0.756, and average positive inbreeding coefficients F IS(resprouter) = 0.058, F IS(seeder) = 0.080. This set of microsatellite loci will be used to conduct a population genetic survey of seeder and resprouter populations throughout the range of the species. Cross-species transferability was also assayed in four other South African and four European species of the genus Erica, supporting their potential use for population genetic analyses.  相似文献   

12.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

13.
Several Cape species of the genus Erica are known to present seeder and resprouter phenotypes, and this variation seems to have a genetic basis. Therefore, this genus provides ideal model systems for using to elucidate the evolution of nonsprouting or seeder and resprouter life-histories in woody, fire-recruiting plants. A simple simulation model was developed to identify, under life-history optimality, the ecological conditions (viz. rainfall conditions and fire frequency) that conferred a selective advantage to the seeder phenotype over the resprouter in a given Cape Erica species. The model illustrated that the seeder life-history was able to invade and replace a resprouter population only under a mild mediterranean climate, with short, moderate summer droughts. This simulation approach will contribute to a better understanding of the biogeographical pattern of seeder and resprouter lineages of one of the paradigmatic fynbos woody taxa throughout the Cape floristic region.  相似文献   

14.
Juvenile (2–4 years old) plants of a taxonomically diverserange of dicotyledonous species were examined following recruitmentfrom seed in recently burnt habitats in S.W. Australia. Obligateseeder species (those succumbing to fire) had on average, analmost threefold greater total plant d. wt and more than a fourfoldgreater shoot: root d. wt ratio than comparably-aged, cohabiting,resprouter species (those capable of surviving fire). Starchwas generally much more concentrated in root dry matter of resproutersthan seeders, and both categories exhibited greater starch storagecapacity in roots than shoots. Members of the Myrtaccae wereexceptional in not showing a greater root starch reserve inresprouter than in seeder species. and in carrying as high,or higher, starch levels in shoots as in roots. Anatomical investigationson roots provided instances of zero starch storage, storage,only in rays or in cortex, in rays and in xylem parenchyma,in rays and in cortex, or in all three locations. High starchratings of resprouter roots related mostly to higher starchgrain packing density at storage sites, but in certain instancesthese also reflected proportionally greater areas of tissuespecifically devoted to storage. Dry matter of shoots of bothseeders and resprouters generally contained higher levels ofN, P, K, Ca and Mg than that of roots, but there was no significantevidence of elements being more concentrated in resproutersthan in seeders. Fire response, seedlings, resprouter, obligate seeder, shoot: root ratio, starch storage, mineral nutrition  相似文献   

15.
Selected epacrids (92 species in 15 genera) were examined withrespect to fire response type, morphology, root anatomy andstarch storage. Seeders, 75% of the species investigated, possesseda single main stem and a small root system with lateral rootswhich in most cases did not spread beyond the shoot canopy.Resprouter species were generally multi-stemmed with large lignotuberousroot stocks. Certain seeder and resprouter species were intermediatein form and showed small root systems and basally branched mainstems. Amounts of starch in roots of seeders (1.9±0.5mgstarch gd.wt per root) were much less than in resprouters (14.1±3.3)whereas amounts in shoots were similar (1.9±0.5 and 1.6±0.6mgstarch gd.wt per shoot, respectively). Starch storage in rootswas mostly confined to rays of xylem parenchyma and inter-rayxylem parenchyma and the greater storage capacity of resprouterswas generally due to broader rays. Growth zones in root xylemranged from clear, verifiable annual rings, as in many seederspecies, to indistinct growth zones, typical of many resprouterspecies. Shoot:root dry weight ratios were higher in seedersthan resprouters. The study suggests that speciation withinthe Epacridaceae into seeder and resprouter forms involved divergentdifferentiation in terms of morphology, shoot:root dry weightratio root storage of starch. Seeder; starch storage; growth rings; growth zones; south-west Australia; resprouter; Epacridaceae  相似文献   

16.
How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA) and trait differentiation (QST) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50‐fold in census size N (179–8416) and 10‐fold in effective number of breeders, Nb (18–135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made.  相似文献   

17.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

18.
M. Vil  F. Lloret 《植被学杂志》2000,11(4):597-606
Abstract. In Mediterranean shrublands, post‐fire accumulation of above‐ground biomass of resprouters is faster than that of seeders. This suggests that resprouters may have a competitive advantage. To test this hypothesis, we used a removal experiment to study the effect of the presence of the dominant tussock‐grass Ampelodesmos mauritanica on the resprouting shrubs Erica multiflora and Globularia alypum and on the seeders Rosmarinus officinalis and Pinus halepensis three and four years after a wildfire. Water potential of target plants was also measured to see if Ampelodesmos removal increased water availability. Ampelodesmos marginally reduced growth of all target species but did not influence survival or water potential of any target species. Our results suggest that the effect of climatically influenced water stress was stronger than the effect of Ampelodesmos neighbours. Plant‐plant interactions in this Mediterranean community are weak after fire and the magnitude of the Ampelodesmos effect does not differ between seeders and resprouters.  相似文献   

19.
Life‐history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post‐fire regenerative strategies (resprouters, seeders and seeder–resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root‐to‐shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root‐to‐shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species.  相似文献   

20.
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QSTFST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号