首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sequestration of misfolded proteins into aggregates is an integral pathway of the protein quality control network that becomes particularly prominent during proteotoxic stress and in various pathologies. Methods for systematic analysis of cellular aggregate content are still largely limited to fluorescence microscopy and to separation by biochemical techniques. Here, we describe an alternative approach, using flow cytometric analysis, applied to protein aggregates released from their intracellular milieu by mild lysis of yeast cells. Protein aggregates were induced in yeast by heat shock or by chaperone deprivation and labeled using GFP- or mCherry-tagged quality control substrate proteins and chaperones. The fluorescence-labeled aggregate particles were distinguishable from cell debris by flow cytometry. The assay was used to quantify the number of fluorescent aggregates per μg of cell lysate protein and for monitoring changes in the cellular content and properties of aggregates, induced by stress. The results were normalized to the frequencies of fluorescent reporter expression in the cell population, allowing quantitative comparison. The assay also provided a quantitative measure of co-localization of aggregate components, such as chaperones and quality control substrates, within the same aggregate particle. This approach may be extended by fluorescence-activated sorting and isolation of various protein aggregates, including those harboring proteins associated with conformation disorders.  相似文献   

2.
Chaperones in control of protein disaggregation   总被引:1,自引:0,他引:1       下载免费PDF全文
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.  相似文献   

3.
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and prevents the aggregation of misfolded proteins by either refolding or degrading aggregation-prone species. During severe stress conditions this protection system can be overwhelmed by high substrate load, resulting in the formation of protein aggregates. In such emergency situations, Hsp104/ClpB becomes a key player for cell survival, as it has the extraordinary capacity to rescue proteins from an aggregated state in cooperation with an Hsp70 chaperone system. The ring-forming Hsp104/ClpB chaperone belongs to the AAA+ protein superfamily, which in general drives the assembly and disassembly of protein complexes by ATP-dependent remodelling of protein substrates. A disaggregation activity was also recently attributed to other eubacterial AAA+ proteins, while such an activity has not yet been identified in mammalian cells. In this review, we report on new insights into the mechanism of protein disaggregation by AAA+ proteins, suggesting that these chaperones act as molecular crowbars or ratchets.  相似文献   

4.
5.
Molecular chaperones have the capacity to prevent inappropriate interactions between aggregation-prone folding or unfolding intermediates created in the cell during protein synthesis or in response to physical and chemical stress. What happens when surveillance by molecular chaperones is evaded or overwhelmed and aggregates accumulate? Recent progress in the elucidation of Hsp100/Clp function suggests that intracellular aggregates or stable complexes can be progressively dissolved by the action of chaperones that act as molecular crowbars or ratchets. These insights set the stage for new progress in the understanding and treatment of diseases of protein folding.  相似文献   

6.
Protein chaperones are essential in all domains of life to prevent and resolve protein misfolding during translation and proteotoxic stress. HSP70 family chaperones, including E. coli DnaK, function in stress induced protein refolding and degradation, but are dispensable for cellular viability due to redundant chaperone systems that prevent global nascent peptide insolubility. However, the function of HSP70 chaperones in mycobacteria, a genus that includes multiple human pathogens, has not been examined. We find that mycobacterial DnaK is essential for cell growth and required for native protein folding in Mycobacterium smegmatis. Loss of DnaK is accompanied by proteotoxic collapse characterized by the accumulation of insoluble newly synthesized proteins. DnaK is required for solubility of large multimodular lipid synthases, including the essential lipid synthase FASI, and DnaK loss is accompanied by disruption of membrane structure and increased cell permeability. Trigger Factor is nonessential and has a minor role in native protein folding that is only evident in the absence of DnaK. In unstressed cells, DnaK localizes to multiple, dynamic foci, but relocalizes to focal protein aggregates during stationary phase or upon expression of aggregating peptides. Mycobacterial cells restart cell growth after proteotoxic stress by isolating persistent DnaK containing protein aggregates away from daughter cells. These results reveal unanticipated essential nonredunant roles for mycobacterial DnaK in mycobacteria and indicate that DnaK defines a unique susceptibility point in the mycobacterial proteostasis network.  相似文献   

7.
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.  相似文献   

8.
9.
Cells require a protein quality control (PQC) system to obtain a correct balance between folding and the degradation of incorrectly folded or misfolded proteins. This system maintains protein homeostasis and is essential for life. Key components of the PQC are molecular chaperones, which compose a ubiquitous class of proteins that mediate protein quality control by aiding in both the correct folding of proteins and the elimination of proteins that are misfolded due to cellular stress or mutation. Recent studies showed that protein homeostasis has an important role in nutrition and aging, increasing the relevance of the heat shock response to human health. This review summarizes our current knowledge of the molecular chaperone system and its role in protein homeostasis.  相似文献   

10.
Neurodegenerative disease can originate from the misfolding and aggregation of proteins, such as Amyloid-beta, SOD1, or Huntingtin. Fortunately, all cells possess protein quality control machinery that sequesters misfolded proteins, either refolding or degrading them, before they can self-associate into proteotoxic oligomers and aggregates. This activity is largely performed by the stress response chaperones (i.e., Hsp70). However, the expression level of molecular chaperones varies widely among cell types. To understand the potential consequence of this variation, we studied the process of protein aggregation in the presence of molecular chaperones using mathematical modeling. We demonstrate that protein aggregation, in the presence of molecular chaperones, is a bistable process. Bistability in protein aggregation offers an explanation for threshold transitions to high aggregate concentration, which are observed both in vitro and in vivo. Additionally, we show that slight variations in chaperone concentration, due to natural fluctuations, have important consequences in a bistable system for the onset of protein aggregation. Therefore, our results offer a possible theoretical explanation for neuronal vulnerability observed in vivo and the onset of neurodegenerative phenotypes in neurons lacking an effective heat-shock response.  相似文献   

11.
Cytotoxicity of cytoplasmic bacterial inclusion bodies has been explored in vivo in cells producing a model, misfolding-prone beta-galactosidase fusion protein. The formation of such aggregates does not result in detectable toxicity on Escherichia coli producing cells. However, a deficiency in the main chaperones DnaK or GroEL but not in other components of the heat shock system such as the chaperone ClpA or the protease Lon, promotes a dramatic inhibition of cell growth. The role of DnaK and GroEL in minimizing toxicity of in vivo protein aggregation is discussed in the context of the conformational stress and the protein quality control system.  相似文献   

12.
13.
Protein quality control: U-box-containing E3 ubiquitin ligases join the fold   总被引:13,自引:0,他引:13  
Molecular chaperones act with folding co-chaperones to suppress protein aggregation and refold stress damaged proteins. However, it is not clear how slowly folding or misfolded polypeptides are targeted for proteasomal degradation. Generally, selection of proteins for degradation is mediated by E3 ubiquitin ligases of the mechanistically distinct HECT and RING domain sub-types. Recent studies suggest that the U-box protein family represents a third class of E3 enzymes. CHIP, a U-box-containing protein, is a degradatory co-chaperone of heat-shock protein 70 (Hsp70) and Hsp90 that facilitates the polyubiquitination of chaperone substrates. These data indicate a model for protein quality control in which the interaction of Hsp70 and Hsp90 with co-chaperones that have either folding or degradatory activity helps to determine the fate of non-native cellular proteins.  相似文献   

14.
In the crowded environment of a cell, the protein quality control machinery, such as molecular chaperones and proteases, maintains a population of folded and hence functional proteins. The accumulation of unfolded proteins in a cell is particularly harmful as it not only reduces the concentration of active proteins but also overburdens the protein quality control machinery, which in turn, can lead to a significant increase in nonproductive folding and protein aggregation. To circumvent this problem, cells use heat shock and unfolded protein stress response pathways, which essentially sense the change to protein homeostasis upregulating protein quality control factors that act to restore the balance. Interestingly, several stress response pathways are proteolytically controlled. In this review, we provide a brief summary of targeted protein degradation by AAA+ proteases and focus on the role of ClpXP proteases, particularly in the signaling pathway of the Escherichia coli extracellular stress response and the mitochondrial unfolded protein response.  相似文献   

15.
Influence of molecular and chemical chaperones on protein folding   总被引:7,自引:2,他引:5       下载免费PDF全文
Protein folding inside the cell involves the Participation of accessory components known as molecular chaperones. In addition to their active participation in the folding process, molecular chaperones serve as a type of ‘quality control system’, recognizing, retaining and targeting misfolded proteins for their eventual degradation. It is now known that a number of human diseases arise as a consequence of specific point mutations or deletions within genes encoding essential proteins. In many cases these mutations/deletions are not so sever as to totally destroy the biological activity of the particular gene product. Rather, the mutations often result in only subtle folding abnormalities which lead to the newly synthesized protein being retained at the endoplasmic reticulum by the actions of the cellylar quality control system. In this short review article we discuss our recent studies showing that the protein folding defect associated with the most common mutation in patients with cystic fibriosis can be overcome by a novel strategy. As shown in the paper by Brown et al in this issue (Brown et al 1996), a number of different low molecular weight compounds, all known to stabilize proteins in their native conformation, are effective in rescuing the processing defect of the mutant cystic fibrosis transmembrane conductance regulator protein. We then discuss how these same compounds, which we now call chemical chaperones, also may prove to be effective in correcting a number of other protein folding abnormalities which constitute the underlying basis of a large number of different human diseases.  相似文献   

16.
Exposure to different conditions or agents that destabilize cell homeostasis often alters protein folding. Depending on stress intensity irreversible protein aggregation and cell death can occur. Cells have developed a conserved defense mechanism aimed at reducing the deleterious effects induced by protein folding alteration. This mechanism is characterized by the expression of a small number of genes encoding specific proteins, named Hsps. Several of these proteins act as molecular chaperones through their ability to refold polypeptides with an altered conformation. Moreover, constitutive Hsps homologues have been characterized that participate in the folding of newly made polypeptides, in the assembly of protein complexes in the endoplasmic reticulum, in the translocation of polypeptides through membranes or in masking mutations that alter protein folding. Neurodegeneratives and cancereous diseases are discussed as examples where high levels of Hsp expression can be either beneficial or deleterious to the cells.  相似文献   

17.
18.
Protein folding and diseases   总被引:3,自引:0,他引:3  
For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.  相似文献   

19.
20.
Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed "proteostasis." Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号