首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors.Calcium ions participate in a multiplicity of physiological and pathological functions. Among the most intensely studied, and the major focus of this article, is the role of Ca2+ as a cellular signal. Elevations in cytoplasmic Ca2+ mediate a plethora of cellular responses, ranging from extremely rapid events (muscle contraction, neurosecretion), to slower more subtle responses (cell division, differentiation, apoptosis). In contrast to most cellular signals, it is a relatively simple matter to observe changes in cytoplasmic Ca2+ in real time in living cells. As a result, the truly complex nature of Ca2+ signaling pathways has been revealed. The challenge is to understand what regulates these signals and what the biological significance of their complexity is.In the majority of laboratory experiments examining effects of various stimulants on Ca2+ signaling, supramaximal concentrations of activating agonists are employed resulting in rapid, robust, and often sustained increases in cytoplasmic Ca2+. It has long been appreciated that these signals result from a coordinated release of intracellular stores and increased Ca2+ influx across the plasma membrane (Bohr, 1973; Putney et al. 1981). The intracellular release of Ca2+ most commonly results from the Ca2+ releasing action of the phospholipase C-derived second messenger, inositol 1,4,5-trisphosphate (InsP3) (Streb et al. 1983), whereas the entry of Ca2+ is because of the activation of store-operated channels in the plasma membrane (Putney 1986). However, it is becoming increasingly clear that these large sustained elevations seldom occur with physiological levels of stimulants. Rather the more common pattern of Ca2+ signaling, in both excitable and nonexcitable cells is a pattern of periodic discharges and/or entry of Ca2+. In excitable cells, such as the heart for example, these may be comprised of, or initiated by regenerative all-or-none plasma membrane channel activation, the Ca2+ action potential (Tsien et al. 1986) with amplification by intracellular Ca2+ release (Fabiato 1983). In nonexcitable cells, these spikes of cytoplasmic Ca2+ arise from regenerative discharge of stored Ca2+, a process generally termed Ca2+ oscillations (Prince and Berridge 1973; Woods et al. 1986). Like Ca2+ action potentials, these all-or-none discharges of Ca2+ represent a form of excitable behavior of the intracellular Ca2+ release signaling mechanism. However, because it is not possible to easily monitor and control the transmembrane chemical and biophysical parameters, as is the case for excitable plasma membrane behavior, it has been more difficult to fully understand the basic mechanisms by which these Ca2+ oscillations arise. Thus, although the question has been exhaustively studied for well over twenty years, there is still uncertainty and controversy over the underlying processes that give rise to Ca2+ oscillations. A number of reviews have discussed these issues at some length (Berridge and Galione 1988; Rink and Jacob 1989; Berridge 1990; Petersen and Wakui 1990; Berridge 1991; Cuthbertson and Cobbold 1991; Meyer and Stryer 1991; Hellman et al. 1992; Tepikin and Petersen 1992; Thomas et al. 1992; Dupont and Goldbeter 1993; Keizer 1993; Sneyd et al. 1994; Li et al. 1995; Thomas et al. 1996; Shuttleworth 1999; Lewis 2003; Dupont et al. 2007). In the current treatment, we have chosen to focus on two important aspects of Ca2+ oscillations. First, we review the available evidence for various computational models of Ca2+ oscillations that employ a quantitative approach to validate or repudiate specific mechanisms. Second, we consider the interrelationship between Ca2+ oscillations and plasma membrane Ca2+ influx mechanisms, with the view that we may learn more of the physiological function that these intracellular discharges of Ca2+ provide.  相似文献   

3.
Store-operated calcium channels (SOCs) are a nearly ubiquitous Ca2+ entry pathway stimulated by numerous cell surface receptors via the reduction of Ca2+ concentration in the ER. The discovery of STIM proteins as ER Ca2+ sensors and Orai proteins as structural components of the Ca2+ release-activated Ca2+ (CRAC) channel, a prototypic SOC, opened the floodgates for exploring the molecular mechanism of this pathway and its functions. This review focuses on recent advances made possible by the use of STIM and Orai as molecular tools. I will describe our current understanding of the store-operated Ca2+ entry mechanism and its emerging roles in physiology and disease, areas of uncertainty in which further progress is needed, and recent findings that are opening new directions for research in this rapidly growing field.Calcium is a remarkably multifunctional signaling ion, at the heart of diverse biological processes that direct the birth, development, function, and eventual death of cells, tissues, and organisms. Cells use a diverse array of transporters and channels to regulate intracellular Ca2+ concentration ([Ca2+]i). A major pathway present in nearly all metazoan cells is the store-operated Ca2+ channel (SOC). The defining feature of SOCs, the one that distinguishes them from all other classes of Ca2+ channels discussed in this volume, is their activation by the reduction of Ca2+ concentration in the lumen of the ER ([Ca2+]ER). Though they were originally described in nonexcitable cells (cells lacking the ability to fire action potentials), they are now known to be present in virtually all cells, including excitable cells like skeletal muscle and neurons (Parekh and Putney 2005).Physiologically, SOCs are most commonly activated by stimuli that release Ca2+ from the ER. This generally involves receptors that activate phospholipase C to produce inositol 1,4,5-trisphosphate (IP3) and activate IP3 receptors in the ER, but can also result from Ca2+-induced Ca2+ release through ER/SR ryanodine receptors. The notion that ER Ca2+ depletion can control Ca2+ entry was first formulated by Jim Putney 25 years ago as the “capacitative calcium entry” hypothesis based on observations that Ca2+ entry triggered by muscarinic agonists was more closely linked to the emptiness of the ER store than to IP3 elevation or occupation of the muscarinic receptor (Putney 1986). The introduction of thapsigargin (TG) (Thastrup et al. 1989), a sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor that depletes ER Ca2+ independently of receptors and IP3, and methods for measuring [Ca2+]i in single cells (fura-2, indo-1, etc.) (Grynkiewicz et al. 1985) provided powerful tools that greatly accelerated progress in establishing store-operated Ca2+ entry (SOCE, as it was later renamed) as a ubiquitous Ca2+ entry pathway. TG-induced Ca2+ entry was soon shown to occur in dozens of cell types (Putney and Bird 1993; Parekh and Penner 1997), though nothing was known about the diversity of pathways that might be involved, let alone their molecular basis.A major step forward was the identification of store-operated Ca2+ currents in mast cells and T cells. This achievement arose initially from attempts to identify Ca2+ conductances triggered by secretory agonists in mast cells and antigen receptors in T cells (Penner et al. 1988; Lewis and Cahalan 1989). In both cases, extremely small currents were detected and linked to large [Ca2+]i rises, suggesting a high Ca2+ selectivity. In T cells, the current was shown to activate spontaneously during whole-cell recordings and in response to the T-cell mitogen phytohemagglutinin in perforated-patch recordings (Lewis and Cahalan 1989). Soon after, fluorescence-based studies showed that Ca2+ influx triggered through T cell mitogens shared several features with TG-induced influx, suggesting that T cell receptor agonists activated the store-dependent pathway (Mason et al. 1991; Sarkadi et al. 1991). These two paths of research converged when Hoth and Penner described a highly Ca2+-selective current in mast cells that was activated in whole-cell recordings spontaneously (by Ca2+ chelators), by IP3, and by ionomycin, and called it the Ca2+ release-activated Ca2+ (CRAC) current (Hoth and Penner 1992). In Jurkat T cells, Zweifach and Lewis showed that TG activated a similar current, which appeared to be identical to the mitogen-stimulated current described earlier, and made the first estimate of its characteristically tiny conductance (∼20 femtosiemens, far too small to resolve single-channel currents) (Zweifach and Lewis 1993). These initial studies defined a membrane conductance that over the next decade would be described biophysically and pharmacologically in detail, providing a characteristic “fingerprint” culled from its ion selectivity, unitary conductance, and regulation by intra- and extracellular Ca2+ and pharmacological inhibitors (Parekh and Penner 1997; Prakriya et al. 2004).Among several currents that were described as store-operated in different cells, the CRAC current emerged as the prototype because of its extensive characterization and the weight of evidence showing that it could be activated by ER Ca2+ depletion independently of surface receptors or changes in cytosolic [Ca2+]. This included activation by intracellular Ca2+ chelators, SERCA inhibitors or ionomycin at constant intracellular [Ca2+]i, and by the Ca2+ chelator TPEN loaded into the ER (Prakriya et al. 2004; Parekh and Putney 2005). In fact, the CRAC channel is the only store-operated channel whose input–output relation is known. This relation, first examined by Hofer et al. (1998) and later quantified by Luik et al. (2008) using an ER-targeted cameleon protein, shows that ICRAC is a highly nonlinear function of [Ca2+]ER, with a Hill coefficient of ∼4 and a K1/2 of 170 µM. Given a resting [Ca2+]ER of ∼400 µM, these results suggest that the ER must be depleted by ∼25% before ICRAC begins to activate significantly.Over the two decades after Putney formalized the capacitative Ca2+ entry hypothesis, many mechanisms were proposed as the link between Ca2+ store depletion and SOCE. Among these, diffusible messengers released from the ER, insertion of CRAC channels into the plasma membrane, and conformational coupling of CRAC channels with IP3 receptors in the ER were the most extensively studied, but in the absence of molecular substrates were difficult to establish (Prakriya et al. 2004; Parekh and Putney 2005). The CRAC channel fingerprint proved useful in ruling out a number of candidate genes for the CRAC channel itself, particularly members of the transient receptor potential (TRP) protein family, but its identity remained a mystery (Prakriya et al. 2004; Parekh and Putney 2005). The discoveries of the ER Ca2+ sensor STIM1 in 2005 and the CRAC channel protein Orai1 a year later marked an unmistakable turning point in the field, as they provided the first and most essential molecular tools with which to dissect the SOCE mechanism. The history of these discoveries and the early revelations they afforded have been reviewed extensively (Cahalan et al. 2007; Wu et al. 2007; Fahrner et al. 2009; Putney 2009; Várnai et al. 2009; Hogan et al. 2010). In this review, I will summarize our current understanding of how Ca2+ store depletion leads to Ca2+ entry at a molecular level, and the role of STIM oligomerization and additional proteins in this process. I will also describe how these discoveries and the ensuing studies have increased awareness of SOCE roles in physiology and disease, and have created entirely new directions for research. Throughout I will emphasize work on STIM1 and Orai1 mainly because they have been the most extensively studied isoforms, but will discuss other STIM and Orai isoforms to highlight important functional differences. For more information on these other isoforms, the reader is referred to the reviews cited above.  相似文献   

4.
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell–cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.Cell–cell adhesions are involved in a diverse range of physiological processes, including morphological changes during tissue development, cell scattering, wound healing, and synaptogenesis (Adams and Nelson 1998; Gumbiner 2000; Halbleib and Nelson 2006; Takeichi 1995; Tepass et al. 2000). In epithelial cells, cell–cell adhesions are classified into three kinds of adhesions: adherens junction, tight junction, and desmosome (for more details, see Meng and Takeichi 2009, Furuse 2009, and Delva et al. 2009, respectively). A key event in epithelial polarization and biogenesis is the establishment of cadherin-dependent cell–cell contacts. Cadherins belong to a large family of adhesion molecules that require Ca2+ for their homophilic interactions (Adams and Nelson 1998; Blanpain and Fuchs 2009; Gumbiner 2000; Hartsock and Nelson 2008; Takeichi 1995; Tepass et al. 2000). Cadherins form transinteraction on the surface of neighboring cells (for details, see Shapiro and Weis 2009). For the development of strong and rigid adhesions, cadherins are clustered concomitantly with changes in the organization of the actin cytoskeleton (Tsukita et al. 1992). Classical cadherins are required, but not sufficient, to initiate cell–cell contacts, and other adhesion protein complexes subsequently assemble (for details, see Green et al. 2009). These complexes include the tight junction, which controls paracellular permeability, and desmosomes, which support the structural continuum of epithelial cells. A fundamental problem is to understand how these diverse cellular processes are regulated and coordinated. Intracellular signals, generated when cells attach with one another, mediate these complicated processes.Several signaling pathways upstream or downstream of cadherin-mediated cell–cell adhesions have been identified (Perez-Moreno et al. 2003) (see also McCrea et al. 2009). Among these pathways, small GTPases including the Rho and Ras family GTPases play critical roles in epithelial biogenesis and have been studied extensively. Many key morphological and functional changes are induced when these small GTPases act at epithelial junctions, where they mediate an interplay between cell–cell adhesion molecules and fundamental cellular processes including cytoskeletal activity, polarity, and vesicle trafficking. In addition to these small GTPases, Ca2+ signaling and phosphorylation of cadherin complexes also play pivotal roles in the formation and maintenance of cadherin-mediated adhesions. Here, we focus on signaling pathways involving the small GTPases in E-cadherin-mediated cell–cell adhesions. Other signaling pathways are described in recent reviews (Braga 2002; Fukata and Kaibuchi 2001; Goldstein and Macara 2007; McLachlan et al. 2007; Tsukita et al. 2008; Yap and Kovacs 2003; see also McCrea et al. 2009).  相似文献   

5.
Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca2+]i increase(s) in the egg, which is generally induced during fertilization. The [Ca2+]i increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca2+]i at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca2+]i signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca2+]i responses. Here, we will discuss the events of egg activation regulated by increases in [Ca2+]i, the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca2+]i responses in these species.An increase in the intracellular concentration of calcium ([Ca2+]i) underlies the initiation, progression and/or completion of a wide variety of cellular processes, including fertilization, muscle contraction, secretion, cell division, and apoptosis (Berridge et al. 2000). To survive and proliferate, cells and organisms must communicate, and changes in [Ca2+]i allow them to quickly respond to environmental, nutritional, or ligand challenges with responses that regulate cell fate and function. Cells devote significant amounts of their energy reserves to create and maintain ionic gradients between extracellular and intracellular milieus and also within the latter, thereby allowing brief alterations in these gradients to have profound signaling effects. In the case of Ca2+, myriad proteins have acquired the ability to bind Ca2+, which allows them to interpret and transform these elevations into cellular functions. This review will examine the cellular modifications induced by [Ca2+]i changes during fertilization in mature mammalian oocytes, henceforth referred to as eggs.Oocytes during maturation ready themselves for fertilization and the initiation of embryogenesis. During this transition, oocytes undergo changes that include the resumption and progression of meiosis, the development of polyspermy-preventing mechanisms, the reorganization of the cytoskeleton with spindle formation and displacement to the cortex, and the translation, accumulation, and degradation of specific mRNAs and proteins involved in development (Horner and Wolfner 2008b). In most species, and in all mammals, a [Ca2+]i signal is responsible for breaking the meiosis-imposed developmental pause, causing egg activation, which is the first stage of embryo development (Whitaker 2006; Horner and Wolfner 2008b). The egg activating [Ca2+]i signal is generally associated with sperm-egg fusion, which occurs at different stages of meiosis depending on the species (Stricker 1999), although in insects, where fertilization is dissociated from activation and where embryos can develop parthenogenetically, the presumed [Ca2+]i increase is thought to be induced by mechanical stimulation during ovulation/oviductal transport (Page and Orr-Weaver 1997; Horner and Wolfner 2008a).The [Ca2+]i responses that underlie egg activation offer a great deal of diversity regarding their spatiotemporal configuration, reflecting both the plasticity of the Ca2+ signaling machinery as well as the dissimilar Ca2+ requirements for egg activation among species. Generally speaking, species can be categorized either as displaying a single [Ca2+]i increase, which is the case of sea urchins, starfish, frogs, and fish, or showing multiple [Ca2+]i changes, also known as oscillations, which is the case of nemertian worms, ascidians, and mammals (Stricker 1999; Miyazaki and Ito 2006). Elucidation of the signaling cascades and identification of the molecules/receptor(s) that initiate the Ca2+ signal at fertilization has proven elusive, and this review will not dwell on that literature; readers are referred to excellent recent reviews on the subject (Whitaker 2006; Parrington et al. 2007). Nonetheless, research has found that Src-family kinases (SFKs) and phospholipase Cγ (PLCγ) are involved in the activation of the phosphoinositide pathway and production of inositol 1,4,5-trisphosphate (IP3) during fertilization in sea urchins, starfish, and frogs, which reflects the contribution of a plasma membrane receptor/signaling complex (Giusti et al. 1999; Sato et al. 2000). Remarkably, a receptor responsible for recruiting and activating SFKs during fertilization remains undiscovered (Mahbub Hasan et al. 2005). Similarly, it has proved difficult to uncover how the sperm initiates oscillations. Research now suggests that this may be accomplished by a novel mechanism whereby the signaling molecule/cargo, known as the sperm factor (SF), is released by the sperm into the ooplasm after fusion of the gametes. Importantly, the SF is not IP3 or Ca2+ but rather it contains a protein moiety (Swann 1990; Wu et al. 1997; Kyozuka et al. 1998; Harada et al. 2007). To date, only the mammalian SF’s molecular identity has been resolved, and found to be another member of the PLC family, a novel sperm-specific isoform named PLCζ (Saunders et al. 2002). This review will examine the literature on mammalian PLCζs and will focus as well on the egg molecules that are required to initiate and sustain [Ca2+]i oscillations in these species.  相似文献   

6.
Epithelial cell–cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton. Regulation of cell–cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development. Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs. In this review, we will discuss these three distinct stages in the lifespan of cell–cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell–cell junctions.Cell–cell junction formation and remodeling occur repeatedly throughout development. Epithelial cells are linked by apical adherens junctions (AJs) that rely on the cadherin-catenin-actin module. Cadherins, of which epithelial E-cadherin (E-cad) is the most studied, are Ca2+-dependent transmembrane adhesion proteins forming homophilic and heterophilic bonds in trans between adjacent cells. Cadherins and the actin cytoskeleton are mutually interdependent (Jaffe et al. 1990; Matsuzaki et al. 1990; Hirano et al. 1992; Oyama et al. 1994; Angres et al. 1996; Orsulic and Peifer 1996; Adams et al. 1998; Zhang et al. 2005; Pilot et al. 2006). This has long been attributed to direct physical interaction of E-cad with β-catenin (β-cat) and of α-catenin (α-cat) with actin filaments (for reviews, see Gumbiner 2005; Leckband and Prakasam 2006; Pokutta and Weis 2007). Recently, biochemical and protein dynamics analyses have shown that such a link may not exist and that instead, a constant shuttling of α-cat between cadherin/β-cat complexes and actin may be key to explain the dynamic aspect of cell–cell adhesion (Drees et al. 2005; Yamada et al. 2005). Regardless of the exact nature of this link, several studies show that AJs are indeed physically attached to actin and that cadherins transmit cortical forces exerted by junctional acto-myosin networks (Costa et al. 1998; Sako et al. 1998; Pettitt et al. 2003; Dawes-Hoang et al. 2005; Cavey et al. 2008; Martin et al. 2008; Rauzi et al. 2008). In addition, physical association depends in part on α-cat (Cavey et al. 2008) and additional intermediates have been proposed to represent alternative missing links (Abe and Takeichi 2008) (reviewed in Gates and Peifer 2005; Weis and Nelson 2006). Although further work is needed to address the molecular nature of cadherin/actin dynamic interactions, association with actin is crucial all throughout the lifespan of AJs. In this article, we will review our current understanding of the molecular mechanisms at work during three different developmental stages of AJs biology: assembly, stabilization, and remodeling, with special emphasis on the mechanical forces controlling AJs integrity and development.  相似文献   

7.
8.
Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced.Each neuron typically receives 1000–10,000 synaptic inputs and sends information to an axon, which branches to produce a similar number of synaptic outputs. Most excitatory postsynaptic terminals are associated with dendritic spines, small protrusions emanating from the dendritic surface (Nimchinsky et al. 2002; Alvarez and Sabatini 2007). Each spine has a volume of ∼0.1 femtoliter, and connects to the parent dendrite through a narrow neck, which acts as a diffusion barrier and compartmentalizes biochemical reactions. Ca2+ influx into spines initiates a cascade of biochemical signals leading to various forms of synaptic plasticity including long-term potentiation (LTP).Because LTP in hippocampal CA1 pyramidal neurons is a cellular mechanism that may underlie long-term memory formation, the signal transduction underlying LTP has been extensively studied by pharmacological and genetic methods (Bliss and Collingridge 1993; Derkach et al. 2007). It is now well established that LTP is induced by Ca2+ influx into dendritic spines through NMDA-type glutamate receptors (NMDARs), which induces the insertion of AMPA-type glutamate receptors (AMPARs) into the synapse, thereby increasing the sensitivity of the postsynaptic terminal to glutamate (Derkach et al. 2007; Kessels and Malinow 2009). An increase of release probability during LTP has also been reported (Enoki et al. 2009), and thus both pre- and postsynaptic mechanisms may contribute to LTP (Lisman and Raghavachari 2006).Manipulations of signal transduction using specific pharmacological inhibitors or genetic perturbations have identified many signaling pathways that connect Ca2+ to LTP induction. For example, LTP requires the activation of many signaling proteins, including Ca2+/calmodulin-dependent kinase II (CaMKII), extracellular signal-related kinase (ERK), Phoshoinositide 3 kinase (PI3K), protein kinase A and C, and GTPases such as Ras, Rab, and Rho (Kennedy et al. 2005). The list is continually growing, and the hundreds of implicated proteins form a complex signaling network whose contribution to LTP is still unclear (Bromberg et al. 2008).Signaling dynamics in neurons have traditionally been measured using biochemical analyses (Bromberg et al. 2008). However, the spatiotemporal resolution of conventional biochemistry is limited, restricting analysis to the time scale of many minutes and requiring the homogenization of tissue containing millions of synapses and other cellular elements. Furthermore, resolving synaptically induced changes in signaling by biochemical analysis typically requires stimulating many synapses at the same time, which may produce unintended effects, for instance, excitotoxicity or homeostatic plasticity.The size of dendritic spines is similar to the resolution of an optical microscope, permitting the optical analysis of biochemical signaling in each dendritic spine (Svoboda and Yasuda 2006). In particular, the advent of two-photon-based FRET techniques and the development of appropriate fluorescent reporters of specific biochemical reactions (see below) have provided readouts for signal transduction with high spatiotemporal resolution in live brain tissue (Svoboda and Yasuda 2006; Yasuda 2006). This has provided detailed information about the dynamics of signal transduction in spines and dendrites, and insights into the molecular mechanisms of synaptic plasticity.  相似文献   

9.
10.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

11.
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca2+ signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca2+ plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca2+ sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca2+ sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca2+ sensors.Calcium signaling in many cell types can mediate changes in gene expression, cell growth, development, survival, and cell death. However, neuronal calcium signaling processes have become adapted to modulate the function of important pathways in the brain, including neuronal survival, axon outgrowth, and changes in synaptic strength. Changes in the concentration of intracellular free Ca2+ ([Ca2+]i) are essential for the transmission of information through the nervous system as the trigger for neurotransmitter release at synapses. In addition, alterations in [Ca2+]i can lead to a wide range of different physiological changes that can modify neuronal functions over time scales of milliseconds through tens of minutes to days or longer (Berridge 1998). Many of these processes have been shown to be dependent upon the particular route of Ca2+ entry into the cell. It has long been known that the physiological outcome from a change in [Ca2+]i depends on its location, amplitude, and duration. The importance of location becomes even more pronounced in neurons because of their complex and extended morphologies. [Ca2+]i also regulates neuronal development and neuronal survival (Spitzer 2006). In addition, modifications to Ca2+ signaling pathways have been suggested to underlie various neuropathological disorders (Braunewell 2005; Berridge 2010).Highly localized Ca2+ elevations (Augustine et al. 2003) formed following Ca2+ entry though voltage-gated Ca2+ channels (VGCCs) lead to synaptic vesicle fusion with the presynaptic membrane and thereby allow neurotransmitter release within less than a millisecond. Differently localized and timed Ca2+ signals can, for example, result in changes to the properties of the VGCCs (Catterall and Few 2008) or lead to changes in gene expression (Bito et al. 1997). Postsynaptic Ca2+ signals arising from activation of NMDA receptors give rise to two important processes in synaptic plasticity, long term potentiation (LTP) and long term depression (LTD). LTP and LTD are examples of the way synaptic transmission can change synaptic efficacy and are thought to be important in modulating learning and memory. Importantly, the Ca2+ signals that bring about either LTP or LTD differ only in their timing and duration. LTP is triggered by Ca2+ signals on the micromolar scale for shorter durations, whereas LTD is triggered by changes in [Ca2+]i on the nanomolar scale for longer durations (Yang et al. 1999). Specific Ca2+ signals are likely to be decoded by different Ca2+ sensor proteins. These are proteins that undergo a conformational change on Ca2+ binding and then interact with and regulate various target proteins. Among those Ca2+ sensors that are important for neuronal function are the synaptotagmins that control neurotransmitter release (Chapman 2008), the ubiquitous EF-hand containing sensor calmodulin that has many neuronal roles, and the more recently discovered neuronal EF-hand containing proteins, including the neuronal calcium sensor (NCS) protein (Burgoyne 2007) and the calcium-binding protein (CaBP)/calneuron (Haeseleer et al. 2002) families. We will briefly review synaptotagmins and the neuronal functions of calmodulin but concentrate on the NCS and CaBP families of Ca2+ sensors.  相似文献   

12.
Fibroblast growth factors (FGFs) signal in a paracrine or endocrine fashion to mediate a myriad of biological activities, ranging from issuing developmental cues, maintaining tissue homeostasis, and regulating metabolic processes. FGFs carry out their diverse functions by binding and dimerizing FGF receptors (FGFRs) in a heparan sulfate (HS) cofactor- or Klotho coreceptor-assisted manner. The accumulated wealth of structural and biophysical data in the past decade has transformed our understanding of the mechanism of FGF signaling in human health and development, and has provided novel concepts in receptor tyrosine kinase (RTK) signaling. Among these contributions are the elucidation of HS-assisted receptor dimerization, delineation of the molecular determinants of ligand–receptor specificity, tyrosine kinase regulation, receptor cis-autoinhibition, and tyrosine trans-autophosphorylation. These structural studies have also revealed how disease-associated mutations highjack the physiological mechanisms of FGFR regulation to contribute to human diseases. In this paper, we will discuss the structurally and biophysically derived mechanisms of FGF signaling, and how the insights gained may guide the development of therapies for treatment of a diverse array of human diseases.Fibroblast growth factor (FGF) signaling fulfills essential roles in metazoan development and metabolism. A wealth of literature has documented the requirement for FGF signaling in multiple processes during embryogenesis, including implantation (Feldman et al. 1995), gastrulation (Sun et al. 1999), somitogenesis (Dubrulle and Pourquie 2004; Wahl et al. 2007; Lee et al. 2009; Naiche et al. 2011; Niwa et al. 2011), body plan formation (Martin 1998; Rodriguez Esteban et al. 1999; Tanaka et al. 2005; Mariani et al. 2008), morphogenesis (Metzger et al. 2008; Makarenkova et al. 2009), and organogenesis (Goldfarb 1996; Kato and Sekine 1999; Sekine et al. 1999; Sun et al. 1999; Colvin et al. 2001; Serls et al. 2005; Vega-Hernandez et al. 2011). Recent clinical and biochemical data have uncovered unexpected roles for FGF signaling in metabolic processes, including phosphate/vitamin D homeostasis (Consortium 2000; Razzaque and Lanske 2007; Nakatani et al. 2009; Gattineni et al. 2011; Kir et al. 2011), cholesterol/bile acid homeostasis (Yu et al. 2000a; Holt et al. 2003), and glucose/lipid metabolism (Fu et al. 2004; Moyers et al. 2007). Highlighting its diverse biology, deranged FGF signaling contributes to many human diseases, such as congenital craniosynostosis and dwarfism syndromes (Naski et al. 1996; Wilkie et al. 2002, 2005), Kallmann syndrome (Dode et al. 2003; Pitteloud et al. 2006a), hearing loss (Tekin et al. 2007, 2008), and renal phosphate wasting disorders (Shimada et al. 2001; White et al. 2001), as well as many acquired forms of cancers (Rand et al. 2005; Pollock et al. 2007; Gartside et al. 2009; di Martino et al. 2012). Endocrine FGFs have also been implicated in the progression of acquired metabolic disorders, including chronic kidney disease (Fliser et al. 2007), obesity (Inagaki et al. 2007; Moyers et al. 2007; Reinehr et al. 2012), and insulin resistance (Fu et al. 2004; Chen et al. 2008b; Chateau et al. 2010; Huang et al. 2011), giving rise to many opportunities for drug discovery in the field of FGF biology (Beenken and Mohammadi 2012).Based on sequence homology and phylogeny, the 18 mammalian FGFs are grouped into six subfamilies (Ornitz and Itoh 2001; Popovici et al. 2005; Itoh and Ornitz 2011). Five of these subfamilies act in a paracrine fashion, namely, the FGF1 subfamily (FGF1 and FGF2), the FGF4 subfamily (FGF4, FGF5, and FGF6), the FGF7 subfamily (FGF3, FGF7, FGF10, and FGF22), the FGF8 subfamily (FGF8, FGF17, and FGF18), and the FGF9 subfamily (FGF9, FGF16, and FGF20). In contrast, the FGF19 subfamily (FGF19, FGF21, and FGF23) signals in an endocrine manner (Beenken and Mohammadi 2012). FGFs exert their pleiotropic effects by binding and activating the FGF receptor (FGFR) subfamily of receptor tyrosine kinases that are coded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) in mammals (Johnson and Williams 1993; Mohammadi et al. 2005b). The extracellular domain of FGFRs consists of three immunoglobulin (Ig)-like domains (D1, D2, and D3), and the intracellular domain harbors the conserved tyrosine kinase domain flanked by the flexible amino-terminal juxtamembrane linker and carboxy-terminal tail (Lee et al. 1989; Dionne et al. 1991; Givol and Yayon 1992). A unique feature of FGFRs is the presence of a contiguous segment of glutamic and aspartic acids in the D1–D2 linker, termed the acid box (AB). The two-membrane proximal D2 and D3 and the intervening D2–D3 linker are necessary and sufficient for ligand binding/specificity (Dionne et al. 1990; Johnson et al. 1990), whereas D1 and the D1–D2 linker are implicated in receptor autoinhibition (Wang et al. 1995; Roghani and Moscatelli 2007; Kalinina et al. 2012). Alternative splicing and translational initiation further diversify both ligands and receptors. The amino-terminal regions of FGF8 and FGF17 can be differentially spliced to yield FGF8a, FGF8b, FGF8e, FGF8f (Gemel et al. 1996; Blunt et al. 1997), and FGF17a and FGF17b isoforms (Xu et al. 1999), whereas cytosine-thymine-guanine (CTG)-mediated translational initiation gives rise to multiple high molecular weight isoforms of FGF2 and FGF3 (Florkiewicz and Sommer 1989; Prats et al. 1989; Acland et al. 1990). The tissue-specific alternative splicing in D3 of FGFR1, FGFR2, and FGFR3 yields “b” and “c” receptor isoforms which, along with their temporal and spatial expression patterns, is the major regulator of FGF–FGFR specificity/promiscuity (Orr-Urtreger et al. 1993; Ornitz et al. 1996; Zhang et al. 2006). A large body of structural data on FGF–FGFR complexes has begun to reveal the intricate mechanisms by which different FGFs and FGFRs combine selectively to generate quantitatively and qualitatively different intracellular signals, culminating in distinct biological responses. In addition, these structural data have unveiled how pathogenic mutations hijack the normal physiological mechanisms of FGFR regulation to lead to pathogenesis. We will discuss the current state of the structural biology of the FGF–FGFR system, lessons learned from studying the mechanism of action of pathogenic mutations, and how the structural data are beginning to shape and advance the translational research.  相似文献   

13.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

14.
A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy.In all cellular compartments, correct protein folding is critical to maintain cellular homeostasis. In cases where proteins become misfolded or damaged, it is imperative that they are turned over and removed to prevent the formation of toxic folding intermediates or the accumulation of aggregates to levels that can be deleterious for the cell. Several neurodegenerative diseases share a common pathogenic mechanism, which involves the formation of fibrillar aggregates of a particular protein that can accumulate in the cytosol, the nucleus, or the mitochondria. Examples of this include accumulation of the amyloid-β peptide in Alzheimer’s disease (Kayed et al. 2003; Tanzi and Bertram 2005), accumulation of α-synuclein in Parkinson’s disease (Spillantini et al. 1997; Zarranz et al. 2004), and aggregation of a mutant form of the huntingtin protein caused by extended polyglutamine stretches in Huntington’s disease (DiFiglia et al. 1997). Although the exact mechanism of pathogenesis for these diseases remains unresolved, mitochondrial dysfunction is implicated in their progression, which may in turn be responsible for the loss of neurological cell populations because of their sensitivity and requirement for functional mitochondria (Rodolfo et al. 2010).The evolution of mitochondria began approximately 1.5 billion years ago after an α-proteobacterium was engulfed by a preeukaryotic cell (Gray et al. 1999). Since that time, mitochondria have retained two phospholipid bilayers that segregate two aqueous compartments, the mitochondrial intermembrane space (IMS) and the mitochondrial matrix (Palade 1953). Mitochondria are found in essentially all eukaryotic cells and play integral roles in a number of the cell''s metabolic pathways. For example, mitochondria are the key players in cellular ATP production through an elaborate respiratory chain network found in the organelles inner membrane (IM) (Mitchell 1961; Leonard and Schapira 2000). Mitochondria are also required for the β-oxidation of fatty acids, Fe-S biosynthesis, and Ca2+ homeostasis (Pinton et al. 1998; Rizzuto et al. 2000; Lill 2009; Modre-Osprian et al. 2009). Moreover, mitochondria are key regulators of programmed cell death and they participate in developmental processes as well as aging (Singh 2004; Green 2005).In contrast to early depictions of mitochondria as singular kidney bean shaped entities, it is now well established that mitochondria form elaborate, reticular networks in many tissues (Bereiter-Hahn 1990). The ability of mitochondria to form such networks arises from two major factors: (1) Specialized machineries in the mitochondrial outer membrane (OM) and the IM allow mitochondria to fuse and divide and (2) mitochondria are able to be shuttled along cytoskeletal elements (Anesti and Scorrano 2006; Hoppins et al. 2007). This plasticity of mitochondria ensures that they are able to respond to different cellular cues, which is potentially important for their numerous functions. In different cell types, mitochondria adopt varying morphologies (Kuznetsov et al. 2009). For example, in cultured fibroblasts mitochondria form extensive reticular networks, whereas in neuronal cells, mitochondria can be found enriched at areas of high-energy demand, including presynaptic termini, axon initial segments, and growth cones. Furthermore, in muscle cells, mitochondria adopt a very uniform intermyofibrillar conformation (Vendelin et al. 2005). The dynamic nature of mitochondria provides an explanation as to how they adopt varying organizations in different cell populations. The importance of mitochondrial networks is highlighted by the fact that mutations in components involved in maintaining mitochondrial dynamics results in neurodegenerative diseases (Chan 2006; Olichon et al. 2006; Knott et al. 2008; Martinelli and Rugarli 2010; Winklhofer and Haass 2010).  相似文献   

15.
16.
Microglia are the resident macrophages of the central nervous system (CNS), which sit in close proximity to neural structures and are intimately involved in brain homeostasis. The microglial population also plays fundamental roles during neuronal expansion and differentiation, as well as in the perinatal establishment of synaptic circuits. Any change in the normal brain environment results in microglial activation, which can be detrimental if not appropriately regulated. Aberrant microglial function has been linked to the development of several neurological and psychiatric diseases. However, microglia also possess potent immunoregulatory and regenerative capacities, making them attractive targets for therapeutic manipulation. Such rationale manipulations will, however, require in-depth knowledge of their origins and the molecular mechanisms underlying their homeostasis. Here, we discuss the latest advances in our understanding of the origin, differentiation, and homeostasis of microglial cells and their myelomonocytic relatives in the CNS.Microglia are the resident macrophages of the central nervous system (CNS), which are uniformly distributed throughout the brain and spinal cord with increased densities in neuronal nuclei, including the Substantia nigra in the midbrain (Lawson et al. 1990; Perry 1998). They belong to the nonneuronal glial cell compartment and their function is crucial to maintenance of the CNS in both health and disease (Ransohoff and Perry 2009; Perry et al. 2010; Ransohoff and Cardona 2010; Prinz and Priller 2014).Two key functional features define microglia: immune defense and maintenance of CNS homeostasis. As part of the innate immune system, microglia constantly sample their environment, scanning and surveying for signals of external danger (Davalos et al. 2005; Nimmerjahn et al. 2005; Lehnardt 2010), such as those from invading pathogens, or internal danger signals generated locally by damaged or dying cells (Bessis et al. 2007; Hanisch and Kettenmann 2007). Detection of such signals initiates a program of microglial responses that aim to resolve the injury, protect the CNS from the effects of the inflammation, and support tissue repair and remodeling (Minghetti and Levi 1998; Goldmann and Prinz 2013).Microglia are also emerging as crucial contributors to brain homeostasis through control of neuronal proliferation and differentiation, as well as influencing formation of synaptic connections (Lawson et al. 1990; Perry 1998; Hughes 2012; Blank and Prinz 2013). Recent imaging studies revealed dynamic interactions between microglia and synaptic connections in the healthy brain, which contributed to the modification and elimination of synaptic structures (Perry et al. 2010; Tremblay et al. 2010; Bialas and Stevens 2013). In the prenatal brain, microglia regulate the wiring of forebrain circuits, controlling the growth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). In the postnatal brain, microglia-mediated synaptic pruning is similarly required for the remodeling of neural circuits (Paolicelli et al. 2011; Schafer et al. 2012). In summary, microglia occupy a central position in defense and maintenance of the CNS and, as a consequence, are a key target for the treatment of neurological and psychiatric disorders.Although microglia have been studied for decades, a long history of experimental misinterpretation meant that their true origins remained debated until recently. Although we knew that microglial progenitors invaded the brain rudiment at very early stages of embryonic development (Alliot et al. 1999; Ransohoff and Perry 2009), it has now been established that microglia arise from yolk sac (YS)-primitive macrophages, which persist in the CNS into adulthood (Davalos et al. 2005; Nimmerjahn et al. 2005; Ginhoux et al. 2010, 2013; Kierdorf and Prinz 2013; Kierdorf et al. 2013a). Moreover, early embryonic brain colonization by microglia is conserved across vertebrate species, implying that it is essential for early brain development (Herbomel et al. 2001; Bessis et al. 2007; Hanisch and Kettenmann 2007; Verney et al. 2010; Schlegelmilch et al. 2011; Swinnen et al. 2013). In this review, we will present the latest findings in the field of microglial ontogeny, which provide new insights into their roles in health and disease.  相似文献   

17.
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.Since the presence of dividing cells in the mostly postmitotic adult brain was first described (Altman and Das 1965), the generation of new neurons in adulthood has been proposed to be involved in a variety of behaviors (Doetsch and Hen 2005; Becker and Wojtowicz 2007; Sahay and Hen 2007; Deng et al. 2010; Ming and Song 2011; Miller and Hen 2014). Adult neurogenesis in the healthy mammalian brain is consistently seen in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Recent studies have implicated hippocampal neurogenesis in learning- and memory-related tasks, such as contextual discrimination and spatial navigation and, specifically, in behavioral pattern separation (Clelland et al. 2009; Sahay et al. 2011; Nakashiba et al. 2012; Niibori et al. 2012; see also reviews in Deng et al. 2010; Ming and Song 2011; Marin-Burgin and Schinder 2012), but also in some behavioral effects of antidepressants (Santarelli et al. 2003; see also reviews in Sahay and Hen 2007; Kheirbek et al. 2012; Tanti and Belzung 2013). However, the exact role of adult hippocampal neurogenesis in some of these behaviors has been debated as some studies have shown no effects of altering adult neurogenesis on spatial navigation or antidepressant response. Proposed explanations have included differences in the behavioral tasks used to measure cognition or emotion, motivational state of subjects, species differences, or in how neurogenesis is defined, either as proliferation, survival, or differentiation (see reviews in Zhao et al. 2008; Aimone et al. 2011; Petrik et al. 2012b; Miller and Hen 2014).It must also be noted, however, that these hippocampal neurons are not born into a singular structure. Work in the past several decades has shown that the hippocampus can be divided, not only along the classic trisynaptic loop, but also longitudinally along a septotemporal axis. The septal (dorsal in rodents; posterior in primates) and temporal (ventral in rodents; anterior in primates) poles, as well as potential intermediate zones of the hippocampus, have different anatomic connections and electrophysiological properties, express a gradient of molecular markers, and play different functional roles, such as performance in spatial learning tasks and stress responses (see reviews in Moser and Moser 1998; Fanselow and Dong 2010). Consequently, adult-born neurons in the hippocampal DG may also be segregated along this longitudinal axis, and conflicting functional roles for neurogenesis may be a result of attempting to examine hippocampal neurogenesis as a unitary phenomenon. It is possible that there are intrinsic, cell-autonomous differences in adult-born neurons generated at opposite poles of the DG. An alternative, although not mutually exclusive, hypothesis is that progenitor cells are initially identical, but differentiate in a dissimilar manner as a result of integration into distinct network circuitry. We will, therefore, first discuss heterogeneity of the hippocampus along its longitudinal axis before reviewing differences in neurogenesis between the septal and temporal poles of the DG. As these topics have been reviewed extensively elsewhere (Moser and Moser 1998; Deng et al. 2010; Fanselow and Dong 2010; Koehl and Abrous 2011; Samuels and Hen 2011; Kheirbek et al. 2012; Petrik et al. 2012b), we will not try to exhaustively cover all the current literature. Rather, we attempt to gather key studies examining a septotemporal gradient of the hippocampus and hippocampal neurogenesis. We will then suggest possible approaches to examine neurogenesis in specific subregions of the hippocampal DG. Finally, a short section will examine segregation of the DG along its transverse axis.  相似文献   

18.
We have determined the structure of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in an E2·Pi-like form stabilized as a complex with , an ATP analog, adenosine 5′-(β,γ-methylene)triphosphate (AMPPCP), and cyclopiazonic acid (CPA). The structure determined at 2.5Å resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca2+-ATPases, e.g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing key residues at or near the ATP binding site. A structural comparison to the Na+,K+-ATPase reveals that the Phe93 side chain occupies the equivalent binding pocket of the CPA site in SERCA, suggesting an important role of this residue in stabilization of the potassium-occluded E2 state of Na+,K+-ATPase.The Ca2+-ATPase from sarco(endo)plasmic reticulum of rabbit skeletal muscle (SERCA,5 isoform 1a) is a thoroughly studied member of the P-type ATPase family (1). SERCA possesses 10 transmembrane helices (M1 through M10) with both the N terminus and the C terminus facing the cytoplasmic side and three cytoplasmic domains, inserted in loops between M2 and M3 (A-domain) and between M4 and M5 (P- and N-domain) (2). The enzyme mediates the uptake of Ca2+ ions into the lumen of the sarcoplasmic reticulum (SR) after their release into the cytoplasm through calcium release channels during muscle contraction (3). SERCA, plasma membrane Ca2+-ATPase, and a third, Golgi-located secretory pathway Ca2+-ATPase are important factors in calcium and manganese homeostasis, transport, signaling, and regulation (4, 5).Crystal structures of all major states in the reaction cycle of SERCA have been determined. These include the Ca2E1·ATP state (6, 7) with high affinity Ca2+ binding sites accessible from the cytoplasmic side of the SR membrane, the calcium-occluded transition state (6), the open E2P state with luminal facing ion binding sites that have low affinity for Ca2+ and high affinity for protons (8) and the proton-occluded H2–3E2[ATP] state with a bound modulatory ATP (9). This considerable amount of structural information has turned the Ca2+-ATPase into a valuable model system for studies on structural rearrangements that take place during the catalytic cycle of P-type ATPases. SERCA is considered a promising drug target in medical research, with a particular focus on prostate cancer and infectious diseases. Several compounds have already been shown to bind and inhibit SERCA by stabilizing the enzyme in a particular conformational state. Thapsigargin (TG), cyclopiazonic acid (CPA), and 2,5-di-(tert-butyl) hydroquinone (BHQ) stabilize an E2-like state, and 1,3-dibromo-2,4,6-tri (methylisothiouronium)benzene stabilizes an E1-P-like conformation (1013). CPA is a toxic indole tetramic acid first isolated from Penicillium cyclopium (14) and later found to be produced by Aspergillus versicolor and Aspergillus flavus. Like TG, CPA specifically binds to and inhibits SERCA with nanomolar affinity (15). Indeed, CPA is widely used in biochemical and physiological studies on Ca2+ signaling and muscle function, where it causes Ca2+ store depletion due to specific inhibition of Ca2+ reuptake by SERCA. CPA and TG were originally proposed to bind to similar sites on SERCA (16), but recent crystal structures have shown a distinct site of interaction (17, 18). Despite these structural insights, a previously demonstrated magnesium dependence of CPA binding (19) remained unexplained, and opposing CPA binding modes were observed (see below).Tetramic acids are synthesized naturally, and more than 150 natural derivatives have been isolated from bacterial and fungal species (reviewed in Ref. 20). Tetramic acids possessing a 3-acyl group have the ability to chelate divalent metal ions. For instance, tenuazonic acid from the fungus Phoma sorghina has been shown to form complexes with Ca2+ and Mg2+ (21), as well as heavier metals such as Cu(II), Ni(II), and Fe(III) (22).Previously published crystallographic structures of the SERCA·CPA complex (PDB ID 2O9J and 2EAS) demonstrated that CPA binds within the proposed calcium access channel of SERCA. However, the structures did not reveal a role for magnesium, and the orientation of CPA within this binding site differed in the two studies (17, 18). To address these ambiguities, we have determined the crystal structure of SERCA in complex with , AMPPCP (an ATP analog), and Mn2+·CPA. The structure reveals novel insight into CPA binding, which we find to be mediated by a divalent cation, as demonstrated by means of the anomalous scattering properties of Mn2+. Further and improved refinement using previously deposited data (PDB ID 2O9J and 2OA0), in light of our new findings, also revealed a strong plausibility for a magnesium ion bound at this site. Furthermore, we find a new configuration of the bound AMPPCP nucleotide, addressing the modulatory role of ATP binding to the E2·Pi occluded conformation of SERCA.  相似文献   

19.
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.Wnt pathways play major roles in cell-fate specification, proliferation and differentiation, cell polarity, and morphogenesis (Clevers 2006; van Amerongen and Nusse 2009). Signaling is initiated in the responding cell by the interaction of Wnt ligands with different receptors and coreceptors, including Frizzled, LRP5/6, ROR1/2, RYK, PTK7, and proteoglycans (Angers and Moon 2009; Kikuchi et al. 2009; MacDonald et al. 2009). Receptor activation is accompanied by the phosphorylation of Dishev-elled (Yanagawa et al. 1995), which appears to transduce the signal to both the cell membrane and the nucleus (Cliffe et al. 2003; Itoh et al. 2005; Bilic et al. 2007). Another common pathway component is β-catenin, an abundant component of adherens junctions (Nelson and Nusse 2004; Grigoryan et al. 2008). In response to signaling, β-catenin associates with T-cell factors (TCFs) and translocates to the nucleus to stimulate Wnt target gene expression (Behrens et al. 1996; Huber et al. 1996; Molenaar et al. 1996).This β-catenin-dependent activation of specific genes is often referred to as the “canonical” pathway. In the absence of Wnt signaling, β-catenin is destroyed by the protein complex that includes Axin, GSK3, and the tumor suppressor APC (Clevers 2006; MacDonald et al. 2009). Wnt proteins, such as Wnt1, Wnt3, and Wnt8, stimulate Frizzled and LRP5/6 receptors to inactivate this β-catenin destruction complex, and, at the same time, trigger the phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2 (HIPK2) (Hikasa et al. 2010; Hikasa and Sokol 2011). Both β-catenin stabilization and the regulation of TCF protein function by phosphorylation appear to represent general strategies that are conserved in multiple systems (Sokol 2011). Thus, the signaling pathway consists of two branches that together regulate target gene expression (Fig. 1).Open in a separate windowFigure 1.Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase kinase 3 (GSK3) binds Axin and APC to form the β-catenin destruction complex. Some Wnt proteins, such as Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize β-catenin (β-cat). Stabilized β-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover, GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which β-catenin is required as a scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).Other Wnt proteins, such as Wnt5a or Wnt11, strongly affect the cytoskeletal organization and morphogenesis without stabilizing β-catenin (Torres et al. 1996; Angers and Moon 2009; Wu and Mlodzik 2009). These “noncanonical” ligands do not influence TCF3 phosphorylation (Hikasa and Sokol 2011), but may use distinct receptors such as ROR1/2 and RYK instead of or in addition to Frizzled (Hikasa et al. 2002; Lu et al. 2004; Mikels and Nusse 2006; Nishita et al. 2006, 2010; Schambony and Wedlich 2007; Grumolato et al. 2010; Lin et al. 2010; Gao et al. 2011). In such cases, signaling mechanisms are likely to include planar cell polarity (PCP) components, such as Vangl2, Flamingo, Prickle, Diversin, Rho GTPases, and c-Jun amino-terminal kinases (JNKs), which do not directly affect β-catenin stability (Fig. 1) (Sokol 2000; Schwarz-Romond et al. 2002; Schambony and Wedlich 2007; Komiya and Habas 2008; Axelrod 2009; Itoh et al. 2009; Tada and Kai 2009; Sato et al. 2010; Gao et al. 2011). This simplistic dichotomy of the Wnt pathway does not preclude some Wnt ligands from using both β-catenin-dependent and -independent routes in a context-specific manner.Despite the existence of many pathway branches, only the β-catenin-dependent branch has been implicated in body-axis specification. Recent experiments in lower vertebrates have identified additional pathway components and targets and provided new insights into the underlying mechanisms.  相似文献   

20.
Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range).Ca2+ controls critical cellular responses in all eukaryotic organisms. It controls both short-term biological processes that occur in milliseconds, such as muscle contraction, as well as long-term processes that require longer times, such as cell proliferation and organ development. The specificity of cellular Ca2+ signals is controlled by a sophisticated “toolkit” comprising numerous ion channels, pumps, and exchangers that drive the fluxes of Ca2+ ions across the plasma membrane and across the membranes of intracellular organelles (Berridge et al. 2003).The plasma membrane contains several types of channels that mediate Ca2+ entry from the extracellular ambient, and two systems for Ca2+ extrusion: a low affinity, high capacity Na+/Ca2+ exchanger (NCX), and a high-affinity, low-capacity Ca2+-ATPase (the plasma membrane Ca2+ pump (PMCA)) (Fig. 1). The type of channels and the relative proportions of NCX and PMCA vary with the cell type, the NCX being particularly abundant in excitable tissues, e.g., heart and brain. The regulated opening of the Ca2+ channels by either voltage gating, interaction with ligands or the emptying of intracellular stores, allows a limited amount of Ca2+ to enter the cell to transmit signals to its designated targets. Thereafter, the Ca2+ transients must be dissipated: its extrusion from the cell is mediated by the NCX and the PMCA pump, but Ca2+ is also restored to basal levels by sequestration in the endo/sarcoplasmic reticulum via the SERCA pump and in the mitochondria by the electrophoretic uniporter. The NCX has also been found at the inner membrane of the nuclear envelope (NE) and has been proposed to mediate Ca2+ flux between the nucleoplasm and the NE (Xie et al. 2002), and then to the ER (Wu et al. 2009) in neuronal and certain other cell types. Ca2+ binding proteins also contributed to Ca2+ buffering: In this review, we will not cover them, as we will only discuss the systems that extrude Ca2+ out of the cell.Open in a separate windowFigure 1.A schematic representation of the structures involved in cellular Ca2+ homeostasis. The model shows a cell with its Ca2+-transporting systems: Ca2+-ATPases (plasma membrane and sarco/endoplasmic reticulum, PMCA and SERCA), plasma membrane (PM) Ca2+ channels, Na+/Ca2+ exchangers (NCX and NCLX), 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR), the electrophoretic mitochondrial uptake uniporter (U). Mitochondria are drawn as yellow ellipses, nucleus as orange circle and endoplasmic reticulum is colored in red. The different Ca2+-transporting systems cooperate to maintain the Ca2+ concentration gradient between the extracellular and the intracellular ambient.The PMCA pump is a minor component of the total protein of the plasma membrane (less than 0.1% of it). Quantitatively, it is overshadowed by the more powerful NCX in excitable tissue like heart; however, even cells in which the NCX predominates, the PMCA pump is likely to be the fine tuner of cytosolic Ca2+, as it can operate in a concentration range in which the low affinity NCX is relatively very inefficient.The PMCA was discovered in erythrocytes (Schatzmann 1966), and was then described and characterized in numerous other cell types. It was purified in 1979 using a calmodulin affinity column (Niggli et al. 1979), and cloned about 10 years later (Shull and Greeb 1988; Verma et al. 1988). It shows the same essential membrane topology properties of the SERCA pump. Molecular modeling work using the structure of the SERCA pump as a template (Toyoshima et al. 2000) predicts the same general features of the latter, with 10 transmembrane domains and the large cytosolic headpiece divided into the three main cytosolic A, N, and P domains. The Na+/Ca2+ cotransport process was discovered at about the same time as PMCA by two independent groups working on heart (Reuter and Seitz 1968) and on the squid giant axon (Baker et al. 1969). The exchanger was cloned in 1990 (Nicoll et al. 1990). The sequence was initially predicted to correspond to a protein with 11 transmembrane domains and one large cytosolic loop linking transmembrane domain five and six but a revised model predicting only nine transmembrane domains is now generally accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号