共查询到20条相似文献,搜索用时 0 毫秒
1.
Yu-Xin Xu Li Liu Carolina E. Caffaro Carlos B. Hirschberg 《The Journal of biological chemistry》2010,285(32):24600-24608
Nucleotide sugar transporters of the Golgi apparatus play an essential role in the glycosylation of proteins, lipids, and proteoglycans. Down-regulation of expression of the transporters for CMP-sialic acid, GDP-fucose, or both unexpectedly resulted in accumulation of glycoconjugates in the Golgi apparatus rather than in the plasma membrane. Pulse-chase experiments with radiolabeled sugars and amino acids showed decreased synthesis and secretion of both nonglycoproteins and glycoproteins. Further studies revealed that the above silencing induced endoplasmic reticulum stress and inhibited protein translation initiation. Together these results suggest that global inhibition of Golgi apparatus glycosylation may lead to important secondary metabolic changes, unrelated to glycosylation. 相似文献
2.
Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the
parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca2+ ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by
SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca2+ gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF)
are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca2+ transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3′-triiodo L-thyronine (T3) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be
one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism. 相似文献
3.
Fernandes AM Landeira-Fernandez AM Souza-Santos P Carvalho-Alves PC Castilho RF 《Neurochemical research》2008,33(9):1749-1758
Excessive activation of NMDA glutamate receptors and the resulting loss of intracellular Ca2+ homeostasis may be lethal (excitotoxic) to neurons. Such excitotoxicity can be induced in vivo by intrastriatal infusion
of quinolinate, as this substance selectively activates NMDA receptors. The aim of the present research was to investigate
whether the in vivo treatment of striatal tissue with quinolinate would lead to an early impairment of sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) activity or mitochondrial Ca2+ sequestration, two intracellular mechanisms involved in Ca2+ homeostasis and signaling. Sodium quinolinate was infused intrastriatally into adult rats, and 6 h later the brains were
removed and the corpora striata dissected. At this time point, striatal sections stained with Fluoro-Jade, a cellular marker of cell death, showed initial
signs of neuronal degeneration. In addition, SERCA activity decreased 39% in relation to the activity observed in the control
striata. A corresponding decrease of the same magnitude in 45Ca2+ uptake by striatal microsomes was also found in the treated striata. Western blot analysis did not indicate any decrease
in SERCA levels in striatal tissue after quinolinate infusion. Mitochondrial Ca2+ sequestration was still preserved in quinolinate-treated striatal tissue when the assay was carried out in the presence of
physiological concentrations of ATP and Mg2+. These results suggest that impairment of the SERCA function may be an early event in excitotoxicity. 相似文献
4.
《Current biology : CB》2014,24(14):R660-R672
5.
W. Gordon Whaley Hilton H. Mollenhauer Joyce E. Kephart 《The Journal of cell biology》1959,5(3):501-506
Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell. 相似文献
6.
7.
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels—SNARE proteins—to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.Proteins that are exposed at the plasma membrane or populate a membrane-bounded organelle are synthesized into the endoplasmic reticulum (ER). In the ER, the folding of these proteins takes place and posttranslational modifications such as N-glycosylation and disulfide bridge formation occur. Upon adopting a suitable, often correct, conformation, proteins destined to locations beyond the ER are concentrated at so-called ER exit sites (ERES) and incorporated into nascent COPII-coated vesicles. These COPII vesicles eventually bud off the ER membrane and are transported to the Golgi (in yeast, Drosophila, and C. elegans) or the ER-Golgi intermediate compartment (in mammalian cells) (Schweizer et al. 1990; Kondylis and Rabouille 2003; Spang 2009; Witte et al. 2011).It is assumed that the vesicle coat is at least partially destabilized through the hydrolysis of GTP by the small GTPase Sar1 (Oka and Nakano 1994; Springer et al. 1999). However, some of the destabilized coat components have to stay on the vesicle until it has reached the Golgi apparatus because coat components participate in the recognition and the tethering process (Barlowe 1997; Cai et al. 2007; Lord et al. 2011; Zong et al. 2012). Subsequently, SNARE proteins on the vesicles (v-SNAREs) zipper up with cognate SNAREs on the Golgi (target SNAREs, t-SNAREs) to drive membrane fusion (Hay et al. 1998; Cao and Barlowe 2000; Parlati et al. 2002). The content of the ER-derived COPII vesicles is thereby released into the lumen of the cis-cisterna of the Golgi apparatus. Most proteins will continue their journey through the Golgi apparatus and encounter further modifications such as extension of the glycosylation tree or lipidation. However, some proteins, especially those involved in the fusion process, i.e., the v-SNAREs or proteins that act as export factors of the ER, such as Vma21, which is essential for export of the correctly folded and assembled V0 sector of the V-ATPase, need to be recycled back to the ER for another round of transport (Ballensiefen et al. 1998; Malkus et al. 2004). Moreover, cis-Golgi proteins are returned to the ER for quality/functional control (Todorow et al. 2000; Sato et al. 2004; Valkova et al. 2011). Finally, some ER-resident proteins, such as the ER Hsp70 chaperone BiP/Kar2, can escape the ER, but are captured at the cis-Golgi by the H/KDEL receptor Erd2 and returned to the ER (Lewis et al. 1990; Semenza et al. 1990; Aoe et al. 1997).Unfortunately, the retrograde transport route is also hijacked by toxins. For example, endocytosed cholera toxin subunit A contains a KDEL sequence and can thereby exploit the system to access the ER (Majoul et al. 1996, 1998). From there, it is retro-translocated into the cytoplasm where it can exert its detrimental function. 相似文献
8.
9.
10.
Michiko Yamasaki-Mann Angelo Demuro Ian Parker 《The Journal of biological chemistry》2010,285(32):25053-25061
In addition to its well established function in activating Ca2+ release from the endoplasmic reticulum (ER) through ryanodine receptors (RyR), the second messenger cyclic ADP-ribose (cADPR) also accelerates the activity of SERCA pumps, which sequester Ca2+ into the ER. Here, we demonstrate a potential physiological role for cADPR in modulating cellular Ca2+ signals via changes in ER Ca2+ store content, by imaging Ca2+ liberation through inositol trisphosphate receptors (IP3R) in Xenopus oocytes, which lack RyR. Oocytes were injected with the non-metabolizable analog 3-deaza-cADPR, and cytosolic [Ca2+] was transiently elevated by applying voltage-clamp pulses to induce Ca2+ influx through expressed plasmalemmal nicotinic channels. We observed a subsequent potentiation of global Ca2+ signals evoked by strong photorelease of IP3, and increased numbers of local Ca2+ puffs evoked by weaker photorelease. These effects were not evident with cADPR alone or following cytosolic Ca2+ elevation alone, indicating that they did not arise through direct actions of cADPR or Ca2+ on the IP3R, but likely resulted from enhanced ER store filling. Moreover, the appearance of a new population of puffs with longer latencies, prolonged durations, and attenuated amplitudes suggests that luminal ER Ca2+ may modulate IP3R function, in addition to simply determining the size of the available store and the electrochemical driving force for release. 相似文献
11.
Lin Jiang Florent Allagnat Evrard Nguidjoe Adama Kamagate Nathalie Pachera Jean-Marie Vanderwinden Marisa Brini Ernesto Carafoli Décio L. Eizirik Alessandra K. Cardozo André Herchuelz 《The Journal of biological chemistry》2010,285(40):30634-30643
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes. 相似文献
12.
Intracellular Localization of the Peanut Clump Virus Replication Complex in Tobacco BY-2 Protoplasts Containing Green Fluorescent Protein-Labeled Endoplasmic Reticulum or Golgi Apparatus
下载免费PDF全文

Patrice Dunoyer Christophe Ritzenthaler Odile Hemmer Pierre Michler Christiane Fritsch 《Journal of virology》2002,76(2):865-874
RNA-1 of Peanut clump virus (PCV) encodes the proteins P131 and P191, containing the signature motifs of replication proteins, and P15, which regulates viral RNA accumulation. In PCV-infected protoplasts both P131 and P191 were immunodetected in the perinuclear region. Laser scanning confocal microscopy (LSCM) showed that P131 and P191 colocalized with neosynthesized 5-bromouridine 5'-triphosphate-labeled RNA and double-stranded RNA, demonstrating that they belong to the replication complex. On the contrary, the P15 fused to the enhanced green fluorescent protein (EGFP) never colocalized with the two proteins. In endoplasmic reticulum (ER)-GFP transgenic BY-2 protoplasts, the distribution of the green fluorescent-labeled ER was strongly modified by PCV infection. LSCM showed that both P131 and P191 colocalized with ER green fluorescent bodies accumulating around the nucleus during infection. The replication process was not inhibited by cerulenin and brefeldin A, suggesting that PCV replication does not depend on de novo-synthesized membrane and does not require transport through the Golgi apparatus. Electron microscopy of ultrathin sections of infected protoplasts showed aggregates of broken ER but also visualized vesicles, some of which resembled modified peroxisomes. The results suggest that accumulation of PCV during infection is accompanied by specific association of PCV RNA-1-encoded proteins with membranes of the ER and other organelles. The concomitant extensive rearrangement of these membranous structures leads to the formation of intracellular compartments in which synthesis and accumulation of the viral RNA occur in defined areas. 相似文献
13.
Distinction between Endoplasmic Reticulum-Type and Plasma Membrane-Type Ca2+ Pumps (Partial Purification of a 120-Kilodalton Ca2+-ATPase from Endomembranes) 总被引:2,自引:1,他引:2
下载免费PDF全文

Two biochemical types of Ca2+-pumping ATPases were distinguished in membranes that were isolated from carrot (Daucus carota) suspension-cultured cells. One type hydrolyzed GTP nearly as well as ATP, was stimulated by calmodulin, and was resistant to cyclopiazonic acid. This plasma membrane (PM)-type pump was associated with PMs and endomembranes, including vacuolar membranes and the endoplasmic reticulum (ER). Another pump ("ER-type") that was associated mainly with the ER hydrolyzed ATP preferentially, was insensitive to calmodulin, and was inhibited partially by cyclopiazonic acid, a blocker of the animal sarcoplasmic/ER Ca2+ pump. Oxalate stimulation of Ca2+ accumulation by ER-type, but not PM-type, pump(s) indicated a separation of the two types on distinct compartments. An endomembrane 120-kD Ca2+ pump was partially purified by calmodulin-affinity chromatography. The purified polypeptide bound calmodulin reacted with antibodies to a calmodulin-stimulated Ca2+ pump from cauliflower and displayed [32P]phosphoenzyme properties that are characteristic of PM-type Ca2+ pumps. The purified ATPase corresponded to a phosphoenzyme and a 120-kD calmodulin-binding protein on endomembranes. Another PM-type pump was suggested by a 127-kD PM-associated protein that bound calmodulin. Thus, both ER- and PM-type Ca2+ pumps coexist in most plant tissues, and each type can be distinguished from another by a set of traits, even in partially purified membranes. 相似文献
14.
Paavo Rahkila Kalervo Väänänen Jaakko Saraste Kalervo Metsikkö 《Experimental cell research》1997,234(2):452
The organization of membrane trafficking between endoplasmic reticulum and Golgi within multinucleated muscle fibers was analyzed. We found that markers for the compartment involved in endoplasmic reticulum to Golgi trafficking exhibited perinuclear as well as interfibrillar localization. Furthermore, these markers showed prominent colocalization with microtubules. To analyze membrane trafficking, we followed the temperature-controlled transport of the G protein of the mutant vesicular stomatitis virus, tsO45, in isolated myofibers. Perinuclear and cross-striated staining were seen at 39°C, while at 15°C a diffuse staining component appeared along a subset of interfibrillar microtubules. At 20°C, bright Golgi spots were seen to be associated with microtubules that appeared as circumnuclear rings and longitudinal bundles. Beneath the motor end plate, however, the organization of the Golgi elements and microtubules was found to be distinctive. Retrograde trafficking induced by brefeldin A resulted in the disappearance of the Golgi spots throughout the myofibers and the appearance of staining along microtubules. Thus, interfibrillar membranes seem to be active in protein export, and trafficking between endoplasmic reticulum and Golgi elements occurred throughout the myofibers. The results suggest that microtubules served as tracks for the two-way trafficking between the endoplasmic reticulum and the Golgi compartment. 相似文献
15.
Abstract: Various glycolipid-binding toxins are internalized from the cell surface to the Golgi apparatus. Prominent among these is cholera toxin (CT), which consists of a pentameric B subunit that binds to ganglioside GM1 and an A subunit that mediates toxicity. We now demonstrate that rhodamine (Rh)-CT can be further internalized from the Golgi apparatus to the endoplasmic reticulum (ER) in cultured hippocampal neurons and in neuroblastoma N18TG-2 cells and that the A subunit is essential for retrograde transport to the ER. In addition, the rate of internalization of Rh-CT to the Golgi apparatus and ER decreases dramatically as hippocampal neurons mature. The Golgi apparatus was labeled in almost all 1-day-old neurons after <1 h of incubation with Rh-CT but was labeled in <10% of 14-day-old neurons after 1 h. During the first 14 days in culture, there was a 15-fold increase in the number of 125 I-CT-binding sites per cell, indicating that the decrease in the rate of internalization of Rh-CT is not due to reduced levels of cell surface GM1 in older neurons. These results imply that the rate of retrograde transport of CT from the plasma membrane to the Golgi apparatus and ER is regulated during neuronal development and differentiation. 相似文献
16.
Markus Waldeck-Weiermair András T. Deak Lukas N. Groschner Muhammad Rizwan Alam Claire Jean-Quartier Roland Malli Wolfgang F. Graier 《The Journal of biological chemistry》2013,288(21):15367-15379
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises. 相似文献
17.
骨骼肌内质网Ca2+泵转运Ca2+的结构基础 总被引:1,自引:0,他引:1
Ca2 泵(Ca2 -ATPase)是调节细胞内Ca2 浓度的重要蛋白质之一.Ca2 泵在转运Ca2 的过程中经历一系列构象变化.其中,E1状态为外向的Ca2 高亲和状态,E2状态则为内向的Ca2 低亲和状态.目前,骨骼肌内质网Ca2 泵转运Ca2 过程中的几个中间状态,包括E1-2Ca2 ,E1-ATP,E1-P-ADP,E2-Pi和E2状态的三维晶体结构已经解析.介绍这几种状态的晶体结构,并分析Ca2 泵在执行功能过程中结构与功能的关系. 相似文献
18.
《Bioscience, biotechnology, and biochemistry》2013,77(8):1812-1823
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics. 相似文献
19.
The Ca2+/Mn2+ pumps in the Golgi apparatus 总被引:3,自引:0,他引:3
Van Baelen K Dode L Vanoevelen J Callewaert G De Smedt H Missiaen L Parys JB Raeymaekers L Wuytack F 《Biochimica et biophysica acta》2004,1742(1-3):103-112
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed. 相似文献