首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

2.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

3.
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late‐successional conifers to early‐successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age‐dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age‐dependent succession, the relative abundances of early‐successional deciduous broadleaves and early‐successional conifers have increased at the expense of late‐successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early‐successional conifers and deciduous broadleaves, and warming increased early‐successional conifers at the expense of late‐successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.  相似文献   

4.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants.  相似文献   

5.
Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.  相似文献   

6.
Forest succession on degraded tropical lands often is slowed by impoverished seed banks and low rates of seed dispersal. Within degraded landscapes, remnant forests are potential seed sources that could enhance nearby forest succession. The spatial extent that forest can influence succession, however, remains largely unstudied. In abandoned agricultural lands in Kibale National Park, Uganda, recurrent fires have helped perpetuate the dominance of tall (2–3 m) grasses. We examined the effects of distance from forest and grassland vegetation structure on succession in a grassland having several years of fire exclusion. At 10 and 25 m from forest edge, we quantified vegetation patterns, seed predation, and survival of planted tree seedlings. Natural vegetation was similar at both distances, as was seed (eight species) and seedling (six species) survival; however, distance may be important at spatial or temporal scales not examined in this study. Our results offer insight into forest succession on degraded tropical grasslands following fire exclusion. Naturally recruited trees and tree seedlings were scarce, and seed survival was low (20% after 7 mo). While seedling survival was high (95% after 6 to 8 mo), seedling shoot growth was very slow (x?= 0.5 cm/100 d), suggesting that survivorship eventually may decline. Recurrent fires often impede forest succession in degraded tropical grasslands; however, even with fire exclusion, our study suggests that forest succession can be very slow, even in close proximity to forest.  相似文献   

7.
Extreme disturbance events denote another aspect of global environmental changes archetypal of the Anthropocene. These events of climatic or anthropic origin are challenging our perceived understanding about how forests respond to disturbance. I present a general framework of tropical forest responses to extreme disturbance events with specific examples from tropical dry forests. The linkage between level of disturbance severity and dominant mechanism of vegetation recovery is reflected on a variety of initial trajectories of forest succession. Accordingly, more realistic and cost‐effective restoration goals in many tropical forests likely consist in maintaining a mosaic of different successional trajectories while promoting landscape connectivity, rather than encouraging full‐ecosystem recovery to pre‐disturbance conditions. Incorporating extreme disturbance events into the global restoration ecology agenda will be essential to design well‐informed ecosystem management strategies in the coming decades.  相似文献   

8.
Forest succession can influence herbivore communities through changes in host availability, plant quality, microclimate, canopy structure complexity and predator abundance. It is not well known, however, if such influence is constant across years. Caterpillars have been reported to be particularly susceptible to changes in plant community composition across forest succession, as most species are specialists and rely on the presence of their hosts. Nevertheless, in the case of tropical dry forests, plant species have less defined successional boundaries than tropical wet forests, and hence herbivore communities should be able to persist across different successional stages. To test this prediction, caterpillar communities were surveyed during eight consecutive years in a tropical dry forest in four replicated successional stages in Chamela, Jalisco and Mexico. Lepidopteran species richness and diversity were equivalent in mature forests and early successional stages, but a distinctive caterpillar community was found for the recently abandoned pastures. Species composition tended to converge among all four successional stages during the span of eight years. Overall, our results highlight the importance of both primary and secondary forest for the conservation of caterpillar biodiversity at a landscape level. We also highlight the relevance of long‐term studies when assessing the influence of forest succession to account for across year variation in species interactions and climatic factors. Abstract in French is available with online material.  相似文献   

9.
Assessing the recovery of species diversity and composition after major disturbance is key to understanding the resilience of tropical forests through successional processes, and its importance for biodiversity conservation. Despite the specific abiotic environment and ecological processes of tropical dry forests, secondary succession has received less attention in this biome than others and changes in species diversity and composition have never been synthesised in a systematic and quantitative review. This study aims to assess in tropical dry forests 1) the directionality of change in species richness and evenness during secondary succession, 2) the convergence of species composition towards that of old‐growth forest and 3) the importance of the previous land use, precipitation regime and water availability in influencing the direction and rate of change. We conducted meta‐analyses of the rate of change in species richness, evenness and composition indices with succession in 13 tropical dry forest chronosequences. Species richness increased with succession, showing a gradual accumulation of species, as did Shannon evenness index. The similarity in species composition of successional forests with old‐growth forests increased with succession, yet at a low rate. Tropical dry forests therefore do show resilience of species composition but it may never reach that of old‐growth forests. We found no significant differences in rates of change between different previous land uses, precipitation regimes or water availability. Our results show high resilience of tropical dry forests in term of species richness but a slow recovery of species composition. They highlight the need for further research on secondary succession in this biome and better understanding of impacts of previous land‐use and landscape‐scale patterns. Synthesis Secondary forests account for an increasing proportion of remaining tropical forest. Assessing their resilience is key to conservation of their biodiversity. Our study is the first meta‐analysis of species changes during succession focussing on tropical dry forests, a highly threatened yet understudied biome. We show a gradual species accumulation and convergence of composition towards that of old‐growth forests. While secondary tropical dry forests offer good potential for biodiversity conservation, their capacity for recovery at a sufficient rate to match threats is uncertain. Further research on this biome is needed to understand the effect of land use history and landscape processes.  相似文献   

10.
Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin‐wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high‐altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long‐lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet–dry transition season and northward to savanna–forest transition and tropical seasonal forest regions in response to increased forest loss at the “Arc of Deforestation.” Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.  相似文献   

11.
New climate change agreements emerging from the 21st Conference of the Parties and ambitious international commitments to implement forest and landscape restoration (FLR) are generating unprecedented political awareness and financial mobilization to restore forests at large scales on deforested or degraded land. Restoration interventions aim to increase functionality and resilience of landscapes, conserve biodiversity, store carbon, and mitigate effects of global climate change. We propose four principles to guide tree planting schemes focused on carbon storage and commercial forestry in the tropics in the context of FLR. These principles support activities and land uses that increase tree cover in human‐modified landscapes, while also achieving positive socioecological outcomes at local scales, in an appropriate contextualization: (1) restoration interventions should enhance and diversify local livelihoods; (2) afforestation should not replace native tropical grasslands or savanna ecosystems; (3) reforestation approaches should promote landscape heterogeneity and biological diversity; and (4) residual carbon stocks should be quantitatively and qualitatively distinguished from newly established carbon stocks. The emerging global restoration movement and its growing international support provide strong momentum for increasing tree and forest cover in mosaic landscapes. The proposed principles help to establish a platform for FLR implementation and monitoring based on a broad set of socioenvironmental benefits including, but not solely restricted, to carbon mitigation and wood production.  相似文献   

12.
Question: This study evaluates historical changes in landscape structure and heterogeneity in subalpine forests. We use response to severe fires in 2001 and 2003, along with historical reconstructions to examine crown‐fire effects on landscape heterogeneity and to assess, comparatively, effects of fire exclusion management in the 20th century. Location: Subalpine forests of Kootenay National Park (KNP), Canadian Rockies. Methods: Using a landscape‐level model based on a fire‐origin stand age map, we reconstructed decadal burned areas within the landscape for 1750‐2000 (forming reconstructed landscapes). Landscape pattern was analysed for each reconstructed landscape map, and we compared landscape pattern indices (total area, number of patches, mean patch area, patch area variation, largest patch index, edge density, perimeter–area ratio, landscape shape index) with those in 2005 after recent large fires. Results: After large fires in 1926, connectivity of the KNP landscape increased and its diversity was quite low. After 2001 and 2003 fires, the post‐fire landscape of 2005 was highly heterogeneous in terms of size, variation, edge density and perimeter–area ratio of the remnant forest patches. Since the decline in occurrence of large fires after 1926 reflected a period of wet weather, fuel build‐up resulting from landscape homogenization within the 20th century landscape could not be attributed solely to fire exclusion. This period without fires greatly enhanced connectivity of late‐successional forests that finally burned in 2001/2003, but connectivity was within the historical range for these forests. The gradual increase in stand connectivity before recent large fires may indicate that fire exclusion was less responsible than often believed for fuel build‐up in these fire‐susceptible older forests. Conclusions: The large fires at the beginning of the 21st century are within the natural range of disturbances for this landscape, and do not stand out as “human‐induced disasters” in their effects on landscape patterns. Such stochastic large disturbances contribute to maintenance of highly heterogeneous landscape structure, which is important for many taxa and natural ecological processes. Identifying future probability of such large disturbances and their ecological roles should be incorporated into management of these dynamic, disturbance‐prone systems.  相似文献   

13.
Payette  Serge  Pilon  Vanessa  Frégeau  Mathieu  Couillard  Pierre-Luc  Laflamme  Jason 《Ecosystems》2021,24(8):1906-1927

Stand-scale gap-phase dynamics is generally viewed as the main driver of development in mesic deciduous forests of the temperate biome. Soil charcoal of temperate forests in eastern North America are unnoticed in most surveys, thus explaining why fire is undervalued as a driver of forest succession. The extent to which gap-phase, fire, or other processes are responsible for the regeneration and maintenance of mesic deciduous forests is unknown because paleoecological evidence is lacking. We tested the fire-driven succession hypothesis on the development of this major forest type. Based on charcoal 14C dates of two sites, 44 and 55 fires occurred since early Holocene, with a mean interval of 170 to 215 years. The vegetation of both sites followed comparable post-glacial trajectories consisting of three distinct periods. Conifers dominated the two first periods during 5200–6000 years and were replaced by hardwoods–conifers over the last 3500 years. The first period was represented by boreal conifers, whereas the second period, dominated by white pine (Pinus strobus) forests, persisted during 3000–4300 years. The third period marked the development of hardwood (sugar maple, Acer saccharum) forests. Fires occurred continuously on the sites since early Holocene likely under dry conditions during the conifer periods and cooler and moister conditions during the hardwood–conifer period. Recurrent fires appear with climate as key drivers of the long-term dynamics of several temperate forests in eastern North America. Similar studies on other temperate forests should be pursued to test the hypothesis of climate–fire interactions influencing tree composition change.

  相似文献   

14.
Climate change scientists predict an increased intensity of storms (cyclones, hurricanes and typhoons) in the future. Intense storms facilitate plant invasion by increasing resource availability, reducing competition and increasing opportunities for propagule dispersal. We document here the state of current understanding about the response of invasive plant species to intense storms and suggest that the structure and function of forests in storm‐prone regions may be much altered in the future as a result of weed invasion. Intense storms provide a large spatial and temporal window of opportunity for invasion and empirical research demonstrates growth and recruitment rates of invasive species increase following such events, and they spread readily. In particular, lianas and woody invasive species that are shade tolerant and recruit from the seedling layer may constitute the greatest threat to tropical forests following storm events. Forests persisting in fragmented landscapes will be exposed to some of the most severe consequences of intense storms and subsequent weed invasion. In storm‐prone regions, forests of the future are likely to experience a decrease in diversity of native species and homogenization of communities at landscape and regional scales, slower rates of forest succession, increasing degradation of forest fragments and ultimately a decrease in ecosystem function.  相似文献   

15.
Forests that regenerate exclusively from seed following high‐severity fire are particularly vulnerable to local extinction if fire frequency leaves insufficient time for regenerating plants to reach sexual maturity. We evaluate the relative importance of extrinsic (such as fire weather and climate cycles) and intrinsic (such as proneness to fire due to stand age and structural development) factors in driving the decline of obligate seeder forests. We illustrate this using obligate seeding alpine ash (Eucalyptus delegatensis) forests in the montane regions of Victoria, Australia, that were burnt by megafires in 2003 (142,256 ha) or 2007 (79,902 ha), including some twice‐burnt areas (11,599 ha). Geospatial analyses showed only a small effect of stand age on the remote sensing estimates of crown defoliation, but a substantial effect of forest fire weather, as measured by forest fire danger index (FFDI). Analysis of meteorological data over the last century showed that 5‐year increases in FFDI precede cycle major fires in the E. delegatensis forests. Such strong extrinsic climate/weather driving of high‐severity fires is consistent with the ‘interval squeeze model’ that postulates the vulnerability of obligate seeder forests to landscape‐scale demographic collapse in response to worsening fire weather under climate change.  相似文献   

16.
Understanding the response of terrestrial ecosystems to climatic warming is a challenge because of the complex interactions of climate, disturbance, and recruitment across the landscape. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming on the Seward Peninsula (80 000 km2) in north‐west Alaska. Model calibration efforts showed that fire ignition was less sensitive than fire spread to regional climate (temperature and precipitation). In the model simulations a warming climate led to slightly more fires and much larger fires and expansion of forest into previously treeless tundra. Vegetation and fire regime continued to change for centuries after cessation of the simulated climate warming. Flammability increased rapidly in direct response to climate warming and more gradually in response to climate‐induced vegetation change. In the simulations warming caused as much as a 228% increase in the total area burned per decade, leading to an increasingly early successional and more homogenous deciduous forest‐dominated landscape. A single transient 40‐y drought led to the development of a novel grassland–steppe ecosystem that persisted indefinitely and caused permanent increases in fires in both the grassland and adjacent vegetation. These simulated changes in vegetation and disturbance dynamics under a warming climate have important implications for regional carbon budgets and biotic feedbacks to regional climate.  相似文献   

17.
The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late‐successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late‐successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late‐successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity.  相似文献   

18.
Balsam fir (Abies balsamea) and black spruce (Picea mariana) forests are the main conifer forest types in the North American boreal zone. The coexistence of the two species as well as their respective canopy dominance in distinct stands raises questions about the long-term evolution from one forest type to the other in relation to environmental factors including climate and stand disturbance. We tested the hypothesis that repetitive fire events promote the succession of balsam fir forest to black spruce forest and vice versa. Postfire chronosequences of one black spruce (BSP) and one balsam fir (BFI) sites were reconstructed based on the botanical composition and 14C-dated soil macrocharcoals. The results support the hypothesis of a successional dynamics. The BSP site has been affected by fires for the last 7600 years, whereas the BFI site, after having been impacted by several fires during the first half of the Holocene, evolved in a fire-free environment for the last 4400 years. Periods of fire activity facilitated the dominance of black spruce forests. The cessation of fires around 4400 cal. years BP on BFI site marks the beginning of the transition from black spruce to balsam fir stands. This succession is a long process, due to the ability of black spruce to regenerate by layering in the absence of fire. The resulting balsam fir stands are ancient and precarious ecosystems, since fire generally leads to the return of black spruce. The increase in balsam fir to the detriment of black spruce in boreal forests is a response to a decrease in fire frequency.  相似文献   

19.
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one emissions scenario (RCP 8.5). We developed metrics of vulnerability to short‐term extreme and prolonged drought based on annual allocation to stem growth and net primary productivity. We calculated fire vulnerability based on changes in simulated future area burned relative to historical area burned. Simulated historical drought vulnerability was medium to high in areas with observations of recent drought‐related mortality. Comparisons of observed and simulated historical area burned indicate simulated future fire vulnerability could be underestimated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Mountains. Projections show that water‐limited forests in the Rocky Mountains, Southwest, and Great Basin regions will be the most vulnerable to future drought‐related mortality, and vulnerability to future fire will be highest in the Sierra Nevada and portions of the Rocky Mountains. High carbon‐density forests in the Pacific coast and western Cascades regions are projected to be the least vulnerable to either drought or fire. Importantly, differences in climate projections lead to only 1% of the domain with conflicting low and high vulnerability to fire and no area with conflicting drought vulnerability. Our drought vulnerability metrics could be incorporated as probabilistic mortality rates in earth system models, enabling more robust estimates of the feedbacks between the land and atmosphere over the 21st century.  相似文献   

20.
Natural disturbance regimes are changing substantially in forests around the globe. However, large‐scale disturbance change is modulated by a considerable spatiotemporal variation within biomes. This variation remains incompletely understood particularly in the temperate forests of Europe, for which consistent large‐scale disturbance information is lacking. Here, our aim was to quantify the spatiotemporal patterns of forest disturbances across temperate forest landscapes in Europe using remote sensing data and determine their underlying drivers. Specifically, we tested two hypotheses: (1) Topography determines the spatial patterns of disturbance, and (2) climatic extremes synchronize natural disturbances across the biome. We used novel Landsat‐based maps of forest disturbances 1986–2016 in combination with landscape analysis to compare spatial disturbance patterns across five unmanaged forest landscapes with varying topographic complexity. Furthermore, we analyzed annual estimates of disturbances for synchronies and tested the influence of climatic extremes on temporal disturbance patterns. Spatial variation in disturbance patterns was substantial across temperate forest landscapes. With increasing topographic complexity, natural disturbance patches were smaller, more complex in shape, more dispersed, and affected a smaller portion of the landscape. Temporal disturbance patterns, however, were strongly synchronized across all landscapes, with three distinct waves of high disturbance activity between 1986 and 2016. All three waves followed years of pronounced drought and high peak wind speeds. Natural disturbances in temperate forest landscapes of Europe are thus spatially diverse but temporally synchronized. We conclude that the ecological effect of natural disturbances (i.e., whether they are homogenizing a landscape or increasing its heterogeneity) is strongly determined by the topographic template. Furthermore, as the strong biome‐wide synchronization of disturbances was closely linked to climatic extremes, large‐scale disturbance episodes are likely in Europe's temperate forests under climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号