首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus‐growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher‐attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower‐attine lineages. Higher‐attine fungi form two clades, Clade‐A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade‐B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade‐A fungi because some leafcutter species ranging across South America cultivate Clade‐B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade‐B fungi because some Trachymyrmex species cultivate Clade‐A fungi and other Trachymyrmex species cultivate fungi known so far only from lower‐attine ants; (iii) in some locations, single higher‐attine ant species or closely related cryptic species cultivate both Clade‐A and Clade‐B fungi; and (iv) ant–fungus co‐evolution among higher‐attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade‐A or Clade‐B fungi, sustaining with either cultivar‐type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade‐A or Clade‐B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade‐A), but must derive from ant–fungus synergisms and unique ant adaptations.  相似文献   

2.
Queens of the leaf‐cutting ant species Atta laevigata and Atta capiguara were collected soon after their mating flight and maintained in the laboratory until death. Ant corpses showing signs of contamination by insect pathogenic fungi were selected for fungal identification. Filamentous fungi such as Beauveria bassiana and Paecilomyces lilacinus actively sporulated in the ant’s corpses. This is the first report of the latter fungus on reproductives of leaf‐cutting ants. The fact that queens may acquire filamentous fungi including saprophytic and potential insect pathogens after their mating event is especially interesting regarding the impacts of such microbes on the establishment of a new nest.  相似文献   

3.
The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n. , and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes.  相似文献   

4.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

5.
Leaf-cutting ants (Formicidae: Attini) are considered pests in agriculture for their impact in human crops, as they utilize leaf fragments to raise their fungal mutualist (Agaricales: Lepiotaceae). Basically, the basidiomycetous fungus is cultivated to supply food to adult workers and broads; in return, the ants protect it against natural enemies. However, recent studies have claimed that other microorganisms are associated to ant nests where a wide range of interactions may take place. To investigate the occurrence of dematiaceous fungi on the cuticle of Atta laevigata ants, 30 workers were sampled from an adult nest located in the surroundings of the Center for the Studies of Social Insects, UNESP-Rio Claro, SP, Brazil. The use of selective techniques to avoid high-sporulation fungi has been recommended and was tested in this study. To favor the isolation of the desired fungi, heads and cuticle scrapings of ant bodies were inoculated on Mycosel agar and incubated for 3 weeks at 35°C. Morphological and molecular methods were used to identify the filamentous fungi recovered. From 56 isolates, 19 were hyaline filamentous species, and among the remaining 37, some are mentioned as phyto-associated fungi like Alternaria arborescens, Bipolaris sorokiniana, Bipolaris eleusines, Bipolaris zeae, Curvularia trifolii, and Paraphaeosphaeria michotii. These species are reported from A. laevigata bodies for the first time. None of the isolation trials revealed the presence of the parasite Escovopsis or entomopathogenic fungi. The possible spread of the fungi in nature by the ants is discussed.  相似文献   

6.
1. Variation and control of nutritional input is an important selective force in the evolution of mutualistic interactions and may significantly affect coevolutionary modifications in partner species. 2. The attine fungus‐growing ants are a tribe of more than 230 described species (12 genera) that use a variety of different substrates to manure the symbiotic fungus they cultivate inside the nest. Common ‘wisdom’ is that the conspicuous leaf‐cutting ants primarily use freshly cut plant material, whereas most of the other attine species use dry and partly degraded plant material such as leaf litter and caterpillar frass, but systematic comparative studies of actual resource acquisition across the attine ants have not been done. 3. Here we review 179 literature records of diet composition across the extant genera of fungus‐growing ants. The records confirm the dependence of leaf‐cutting ants on fresh vegetation but find that flowers, dry plant debris, seeds (husks), and insect frass are used by all genera, whereas other substrates such as nectar and insect carcasses are only used by some. 4. Diet composition was significantly correlated with ant substrate preparation behaviours before adding forage to the fungus garden, indicating that diet composition and farming practices have co‐evolved. Neither diet nor preparation behaviours changed when a clade within the paleoattine genus Apterostigma shifted from rearing leucocoprinous fungi to cultivating pterulaceous fungi, but the evolutionary derived transition to yeast growing in the Cyphomyrmex rimosus group, which relies almost exclusively on nectar and insect frass, was associated with specific changes in diet composition. 5. The co‐evolutionary transitions in diet composition across the genera of attine ants indicate that fungus‐farming insect societies have the possibility to obtain more optimal fungal crops via artificial selection, analogous to documented practice in human subsistence farming.  相似文献   

7.
We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus‐growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly developed primers and earlier published primers that were developed for fungus‐growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus‐growing ants, are now available for studying the population genetics and colony kin‐structure of these ants.  相似文献   

8.
Abstract 1. We examined the relative effects of the invasive Argentine ant, Linepithema humile, and a common native ant, Prenolepis imparis, on the community of herbivorous insects occurring on willow trees, Salix lasiolepis in Northern California, U.S.A. 2. Using paired control and treatment branches from which we excluded ants and other non‐volant predators, we found that effects of Argentine ants on the herbivore community were generally similar to those of P. imparis. Argentine ants and P. imparis suppressed the damage by skeletonising insects by 50%, but had little effect on most other external‐feeding or internal‐feeding guilds. 3. The abundance of aphids was 100% greater in the presence of Argentine ants, but there was no effect on aphid numbers in the presence of P. imparis. Late season aphid numbers were substantially higher in the presence of Argentine ants, but not P. imparis. 4. The effects of Argentine ants on skeletonising insects and aphids combined with the overwhelming abundance of Argentine ant workers, suggests that they may have substantial, but often overlooked, effects on the herbivore communities on other plant species in or near riparian habitats in which they invade.  相似文献   

9.
Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus‐growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species‐specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.  相似文献   

10.
Pollination in gymnosperms is usually accomplished by means of wind, but some groups are insect‐pollinated. We show that wind and insect pollination occur in the morphologically uniform genus Ephedra (Gnetales). Based on field experiments over several years, we demonstrate distinct differences between two Ephedra species that grow in sympatry in Greece in pollen dispersal and clump formation, insect visitations and embryo formation when insects are denied access to cones. Ephedra distachya, nested in the core clade of Ephedra, is anemophilous, which is probably the prevailing state in Ephedra. Ephedra foeminea, sister to the remaining species of the genus, is entomophilous and pollinated by a range of diurnal and nocturnal insects. The generalist entomophilous system of E. foeminea, with distinct but infrequent insect visitations, is in many respects similar to that reported for Gnetum and Welwitschia and appears ancestral in Gnetales. The Ephedra lineage is well documented already from the Early Cretaceous, but the diversity declined dramatically during the Late Cretaceous, possibly to near extinction around the Cretaceous–Palaeogene boundary. The clade imbalance between insect‐ and wind‐pollinated lineages is larger than expected by chance and the shift in pollination mode may explain why Ephedra escaped extinction and began to diversify again.  相似文献   

11.
Acacia‐ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia‐ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia‐ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia‐ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen‐recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host‐associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant‐specific bacterial lineages.  相似文献   

12.
In natural and managed systems, connections between trees are important structural resources for arboreal ant communities with ecosystem‐level effects. However, ongoing agricultural intensification in agroforestry systems, which reduces shade trees and connectivity between trees and crop plants, may hinder ant recruitment rates to resources and pest control services provided by ants. We examined whether increasing connectivity between coffee plants and shade trees in coffee plantations increases ant activity and enhances biological control of the coffee berry borer, the most devastating insect pest of coffee. Further, we examined whether artificial connections buffer against the loss of vegetation connectivity in coffee plants located at larger distances from the nesting tree. We used string to connect Inga micheliana shade trees containing Azteca sericeasur ant nests to coffee plants to compare ant activity before and after placement of the strings, and measured borer removal by ants on coffee plants with and without strings. Ant activity significantly increased after the addition of strings on connected plants, but not on control plants. Borer removal by ants was also three times higher on connected plants after string placement. Greater distance from the nesting tree negatively influenced ant activity on control coffee plants, but not on connected plants, suggesting that connections between coffee plants and nest trees could potentially compensate for the negative effects that larger distances pose on ant activity. Our study shows that favoring connectivity at the local scale, by artificially adding connections, promotes ant activity and may increase pest removal in agroecosystems. Abstract in Spanish is available with online material.  相似文献   

13.
Summary The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that commonly displaces native ants and other ground-dwelling invertebrates in its introduced range. Previous studies have documented a relationship between the spread of Argentine ants and abiotic conditions (particularly water availability) in invaded areas, suggesting that the invasion success of Argentine ants may be related to specific abiotic factors. This study describes the relative humidity preferences and survival of Argentine ants and a dominant native ant, Iridomyrmex rufoniger sp. group, in the laboratory. In a preference experiment, Argentine ant workers showed a significantly greater propensity than Iridomyrmex to locate themselves in containers with the highest relative humidity. A series of survival trials revealed that the survival of both species was related to the relative humidities within experimental containers. The survival of Argentine ant colonies was reduced in comparison with those of Iridomyrmex sp. after 4 h, however by 24 h both species displayed similar levels of survival in all relative humidity conditions. These findings confirm a relationship between the level of available moisture and the distribution and survival of Argentine ants, and may help to account for the current distribution and invasion success of Argentine ants in Australia.  相似文献   

14.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

15.
The responses of the grass‐cutting ants Atta bisphaerica (Forel) and Atta capiguara (Gonçalves) to the main components of their alarm pheromones were examined in simple field bioassays. Both species react most strongly to 4‐methyl‐3‐heptanone, which causes the full range of alarm behaviour and a large increase in the number of individuals near the sources. In later experiments with A. capiguara, this increase was found to be due primarily to attraction, with some arrestment also occurring. The ant response to 4‐methyl‐3‐heptanone was compared with that to crushed heads and to that with whole ants with crushed heads. The pheromone 4‐methyl‐3‐heptanone by itself stimulates the same level of attraction as crushed heads, but results in far less alarm behaviour and arrests fewer ants. Whole ants with crushed heads attract a greater number of ants than the other sources and also cause more alarm behaviour. Bodies alone attract ants, but do not result in alarm behaviour. The main component in both species is the same, supporting the view that alarm pheromones lack species specificity. However, it appears that other components may also be important either as synergists of the main compound, or by stimulating behaviours that would not be observed in its absence.  相似文献   

16.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

17.
Abstract We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf‐cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant‐fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Amplified fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, confirming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants. We show that incompatibility between ants and transplanted, genetically different cultivars is indeed due to active killing of the novel cultivar by the ants. This incompatibility disappears when ants are force‐fed the novel cultivar for about a week, a result that is consistent with our hypothesis of recognition induced by the resident fungus and eventual replacement of incompatibility compounds during force‐feeding.  相似文献   

18.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

19.
  • 1 The mutualism between wood ants of the Formica rufa group and aphids living in the canopy of trees is a widespread phenomenon in boreal forests, and it can affect tree growth. However, not all trees in the forest are involved in this interaction.
  • 2 To assess the incidence of host trees involved in this ant–aphid mutualism and its spatial distribution in boreal forests, we inventoried sample plots with a radius of 10–15 m around wood ant mounds in 12 forest stands of two age classes (5–12‐year‐old sapling stands and 30–45‐year‐old pole stands) and two dominant tree species (Scots pine and silver birch) in Eastern Finland from 2007 to 2009.
  • 3 The proportion of trees visited by ants out of all trees on the individual study plots were in the range 4–62%, and 1.5–39% of the trees on the plots were consistently visited by ants during all 3 years. The percentage of host trees increased with the ant mound base area on the plots. Trees visited by ants were larger and closer to the mound than trees not visited by ants. Within the group of visited trees, more ants were found on bigger trees and on trees close to the ant mounds.
  • 4 Extrapolated from plot to stand level, we estimated that 0.5–6.6% of the trees were host trees in at least one of the three study years, and that only 0.01–2.3% of all the trees were consistently visited by ants during all 3 years. It is concluded that ant–aphid mutualism is a minor occurrence at the stand level.
  相似文献   

20.
1. Fire ants naturally invade some undisturbed ecosystems of high conservation value and may negatively impact co‐occurring ants. 2. Over 3 years, fire ants were added and removed from a longleaf pine savanna ecosystem that naturally supports a low density of fire ants. Impacts on co‐occurring ants were monitored using pitfall traps. 3. Treatments resulted in significant differences in average fire ant abundance across all plots only in the first year of the experiment. Fire ants had little discernible impact. The abundance and species richness of co‐occurring ants in removal plots never differed from unmanipulated control plots. The abundance of co‐occurring ants was very slightly lower and ant species richness was slightly higher where Solenopsis invicta Buren colonies were added, but neither contrast was significant. 4. The poor conditions in this habitat for many native ants may explain this outcome. More broadly, the impact of fire ants on ant assemblages still appears to be secondary and largely a consequence of human impacts on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号