首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Life history theory predicts that iteroparous animals adaptively partition reproductive effort between current and future reproduction. When rearing costs of current offspring exceed the potential benefits, parental care should be terminated and deferred toward future reproduction. We tested two related predictions that follow from life history theory: (a) parents should be sensitive to offspring viability and withhold parental care if offspring survival probability drops and future reproductive opportunities are likely, and (b) parents should be less sensitive to offspring survival probability when future reproduction is unlikely and maximize parental care late in life. The wolf spider, Pardosa milvina, demonstrates extensive parental care; however, they may also abandon or cannibalize their egg sacs. We tested the effects of egg sac damage and production of a previous egg sac on egg sac abandonment and cannibalism decisions. Among four egg sac groups (1st egg sac intact, 1st egg sac damaged, 2nd egg sac intact, 2nd egg sac damaged), we daily monitored egg sac abandonment and cannibalism and measured differences in egg sac searching, protection, and grooming among removed and damaged egg sacs (N = 116 with 1st egg sac and 88 with 2nd egg sac). Females with first egg sacs abandoned and cannibalized damaged egg sacs significantly more compared to unmanipulated egg sacs; however, females with second egg sacs were insensitive to egg sac damage. Females also spent significantly more time protecting second egg sacs compared to first egg sacs and groomed damaged egg sacs significantly more than undamaged. These results support the general predictions of life history theory that indicate that abandonment and cannibalism should decrease with diminished future reproductive potential and that parents should be less sensitive to indicators of offspring survival probability late in life.  相似文献   

2.
    
Offspring quantity and quality are components of parental fitness that cannot be maximized simultaneously. When the benefits of investing in offspring quality decline, parents are expected to shift investment towards offspring quantity (other reproductive opportunities). Even when mothers retain complete control of resource allocation, offspring control whether to allocate investment to growth or development towards independence, and this shared control may generate parent–offspring conflict over the duration of care. We examined these predictions by, in a captive colony, experimentally removing tadpoles of the strawberry poison frog (Oophaga pumilio) from the mothers that provision them with trophic eggs throughout development. Tadpoles removed from their mothers were no less likely to survive to nutritional independence (i.e. through metamorphosis) than were those that remained with their mothers, but these offspring were smaller at metamorphosis and were less likely to survive to reach adult size, even though they were fed ad libitum. Tadpoles that remained with their mothers developed more slowly than those not receiving care, a pattern that might suggest that offspring extracted more care than was in mothers’ best interests. However, the fitness returns of providing care increased with offspring development, suggesting that mothers would be best off continuing care until tadpoles initiated metamorphosis. Although the benefits of parental investment in offspring quality are often thought to asymptote at high levels, driving parent–offspring conflict over weaning, this assumption may not hold over natural ranges of investment, with selection on both parents and offspring favouring extended durations of parental care.  相似文献   

3.
    
Patterns of parental care are strikingly diverse in nature, and parental care is thought to have evolved repeatedly multiple times. Surprisingly, relatively little is known about the most general conditions that lead to the origin of parental care. Here, we use a theoretical approach to explore the basic life‐history conditions (i.e., stage‐specific mortality and maturation rates, reproductive rates) that are most likely to favor the evolution of some form of parental care from a state of no care. We focus on parental care of eggs and eggs and juveniles and consider varying magnitudes of the benefits of care. Our results suggest that parental care can evolve under a range of life‐history conditions, but in general will be most strongly favored when egg death rate in the absence of care is high, juvenile survival in the absence of care is low (for the scenario in which care extends into the juvenile stage), adult death rate is relatively high, egg maturation rate is low, and the duration of the juvenile stage is relatively short. Additionally, parental care has the potential to be favored at a broad range of adult reproductive rates. The relative importance of these life‐history conditions in favoring or limiting the evolution of care depends on the magnitude of the benefits of care, the relationship between initial egg allocation and subsequent offspring survival, and whether care extends into the juvenile stage. The results of our model provide a general set of predictions regarding when we would expect parental care to evolve from a state of no care, and in conjunction with other work on the topic, will enhance our understanding of the evolutionary dynamics of parental care and facilitate comparative analyses.  相似文献   

4.
The evolution of parental care is beneficial if it facilitates offspring performance traits that are ultimately tied to offspring fitness. While this may seem self‐evident, the benefits of parental care have received relatively little theoretical exploration. Here, we develop a theoretical model that elucidates how parental care can affect offspring performance and which aspects of offspring performance (e.g., survival, development) are likely to be influenced by care. We begin by summarizing four general types of parental care benefits. Care can be beneficial if parents (1) increase offspring survival during the stage in which parents and offspring are associated, (2) improve offspring quality in a way that leads to increased offspring survival and/or reproduction in the future when parents are no longer associated with offspring, and/or (3) directly increase offspring reproductive success when parents and offspring remain associated into adulthood. We additionally suggest that parental control over offspring developmental rate might represent a substantial, yet underappreciated, benefit of care. We hypothesize that parents adjust the amount of time offspring spend in life‐history stages in response to expected offspring mortality, which in turn might increase overall offspring survival, and ultimately, fitness of parents and offspring. Using a theoretical evolutionary framework, we show that parental control over offspring developmental rate can represent a significant, or even the sole, benefit of care. Considering this benefit influences our general understanding of the evolution of care, as parental control over offspring developmental rate can increase the range of life‐history conditions (e.g., egg and juvenile mortalities) under which care can evolve.  相似文献   

5.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

6.
Parental care is expected to increase the likelihood of offspring survival at the cost of investment in future reproductive success. However, alternative parental behaviours, such as filial cannibalism, can decrease current reproductive success and consequently individual fitness. We evaluate the role of among-offspring relatedness on the evolution of parental care and filial cannibalism. Building on our previous work, we show how the evolution of care is influenced by the effect of among-offspring relatedness on both the strength of competition and filial cannibalism. When there is a positive relationship between among-offspring competition and relatedness, parental care will be favoured when among-offspring relatedness is relatively low, and the maintenance of both care and no-care strategies is expected. If the relationship between among-offspring competition and relatedness is negative, parental care is most strongly favoured when broods contain highly related offspring. Further, we highlight the range of conditions over which the level of this among-offspring relatedness can affect the co-occurrence of different care/no care and cannibalism/no cannibalism strategies. Coexistence of multiple strategies is independent of the effects of among-offspring relatedness on cannibalism but more likely when among-offspring relatedness and competition are positively associated.  相似文献   

7.
The number of offspring surviving until independence is the fundamental drive in the evolution of parental care. Because of the related costs, parental investment must be balanced with essential resources for parents themselves, among the resources available in the environment under the current parental condition. It is advantageous for parents to adjust their level of investment to the number of offspring; however, there is little evidence that parents employ numerical competence in adjusting their investment level. We investigated how parents respond to experimentally manipulated brood sizes in a passerine species, known as a host of a brood parasitic cuckoo whose chicks presumably deceive their hosts numerically. Parents reduced their provisioning to broods of reduced sizes, whereas parents did not increase provisioning to enlarged broods compared to that in the control condition. These parental responses can be attributed to the response of chicks to the experimental treatments compared to that in the control: chicks lowered begging intensity in the reduced condition, while they did not intensify being in the enlarged condition. Further analyses revealed that eagerness of parents to respond to chick begging intensity differed between the experimental treatments: strong parental response was detected toward begging chicks only in the reduced condition. We propose that the detected equivocality of parental responses might be related to the difference in the number of chicks between the unmanipulated and experimentally manipulated broods, the former reflecting the initial parental decision on the amount of resources to allocate to the brood.  相似文献   

8.
    
The probability of Blue‐footed Booby Sula nebouxii fledglings becoming reproductive adults is maximal when one parent is old and the other young, and minimal when both are old or young. No mechanism has been identified to explain this pattern, but here we showed that nestlings with different‐aged parents are the least infested with ticks. This result constitutes preliminary confirmation of the hypothesis that the effect of combined parental ages on probability of recruitment is mediated by offspring immunocompetence. The contribution of immunocompetence and parental care to these parental age effects needs to be unravelled.  相似文献   

9.
    
Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life‐history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life‐history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non‐feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life‐history evolution.  相似文献   

10.
    
Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life‐history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. These associations may help explain the widespread retention of aquatic eggs and larvae, and the overall diversity of anuran reproductive modes.  相似文献   

11.
Empirical links between egg size and duration of parental care in fishes have generated a considerable amount of theory concerning life history evolution. However, to date, this link has not been investigated in relation to other important life-history traits such as clutch size and body size, or while controlling for shared ancestry between species. We provide the first phylogenetically based tests using a database with information on egg size, clutch size, body size and care duration in cichlid fishes (Cichlidae). Multiple regression analyses, based on independent contrasts on both the species and the genus level, showed that clutch size is the variable most closely related to duration of care. This pattern appeared to be driven by post-hatch care relationships. Our results show that, contrary to expectation, there is no positive link between egg size and care duration in Cichlidae. Instead, greater reproductive output through increased clutch size investment appears to have coevolved with greater care of offspring. We suggest that re-evaluation of the generality of current models of the evolution of egg size under parental care in fishes is needed.  相似文献   

12.
Offspring sizes vary within populations but the reasons are unclear. Game‐theoretic models predict that selection will maintain offspring‐size variation when large offspring are superior competitors (i.e., competition is asymmetric), but small offspring are superior colonizers. Empirical tests are equivocal, however, and typically rely on interspecific comparisons, whereas explicit intraspecific tests are rare. In a field study, we test whether offspring size affects competitive asymmetries using the sessile marine invertebrate, Bugula neritina. Surprisingly, we show that offspring size determines whether interactions are competitive or facilitative—large neighbors strongly facilitated small offspring, but also strongly competed with large offspring. These findings contradict the assumptions of classic theory—that is, large offspring were not superior competitors. Instead, smaller offspring actually benefit from interactions with large offspring—suggesting that asymmetric facilitation, rather than asymmetric competition, operates in our system. We argue that facilitation of small offspring may be more widespread than currently appreciated, and may maintain variation in offspring size via negative frequency‐dependent selection. Offspring size theory has classically viewed offspring interactions through the lens of competition alone, yet our results and those of others suggest that theory should accommodate positive interactions in explorations of offspring‐size variation.  相似文献   

13.
    
Most life forms exhibit a correlated evolution of adult size (AS) and size at independence (SI), giving rise to AS–SI scaling relationships. Theory suggests that scaling arises because relatively large adults have relatively high reproductive output, resulting in strong density‐dependent competition in early life, where large size at independence provides a competitive advantage to juveniles. The primary goal of our study is to test this density hypothesis, using large datasets that span the vertebrate tree of life (fishes, amphibians, reptiles, birds, and mammals). Our secondary goal is to motivate new hypotheses for AS–SI scaling by exploring how subtle variation in life‐histories among closely related species is associated with variation in scaling. Our phylogenetically informed comparisons do not support the density hypothesis. Instead, exploration of AS–SI scaling among life‐history variants suggests that steeper AS–SI scaling slopes are associated with evolutionary increases in size at independence. We suggest that a positive association between size at independence and juvenile growth rate may represent an important mechanism underlying AS–SI scaling, a mechanism that has been underappreciated by theorists. If faster juvenile growth is a consequence of evolutionary increases in size at independence, this may help offset the cost of delayed maturation, leading to steeper AS–SI scaling slopes.  相似文献   

14.
    
Parental care is of fundamental importance to understanding reproductive strategies and allocation decisions. Here, we explore how parental care strategies evolve in variable environments. Using a set of life-history trait trade-offs, we explore the relative costs and benefits of parental care in stochastic environments. Specifically, we consider the cases in which environmental variability results in varying adult death rates, egg death rates, reproductive rate and carrying capacity. Using a measure of fitness appropriate for stochastic environments, we find that parental care has the potential to evolve over a wide range of life-history characteristics when the environment is variable. A variable environment that affects adult or egg death rates can either increase or decrease the fitness of care relative to that in a constant environment, depending on the specific costs of care. Variability that affects carrying capacity or adult reproductive rate has negligible effects on the fitness associated with care. Increasing parental care across different life-history stages can increase fitness gains in variable environments. Costly investment in care is expected to affect the overall fitness benefits, the fitness optimum and rate of evolution of parental care. In general, we find that environmental variability, the life-history traits affected by such variability and the specific costs of care interact to determine whether care will be favoured in a variable environment and what levels of care will be selected.  相似文献   

15.
1. Males and females often differ in their optimal mating rates, resulting potentially in conflicts over remating. In species with separate sexes, females typically have a lower optimal mating rate than males, and can regulate contacts with males accordingly. The realized mating rate may therefore be closer to the female's optimum. In simultaneous hermaphrodites, however, it has been suggested that the intraindividual optimization between 'male' and 'female' interests generates more 'male'-driven mating rates. 2. In order to assess the consequences of variation in mating rate on 'female' reproductive output, we exposed the simultaneously hermaphroditic sea slug Chelidonura sandrana to four mating rate regimes and recorded the effects on a variety of fitness components. 3. In focal 'females', we found (i) a slight but significant linear decrease in fecundity with mating rate, whereas (ii) maternal investment in egg capsule volume peaked at an intermediate mating rate. 4. Combining the observed fecundity cost with the apparent benefits of larger offspring size suggests that total female fitness is maximized at an intermediate mating rate. With the latter being close to the natural mating rate of C. sandrana in the field, our findings challenge the assumption of 'male'-driven mating systems in simultaneous hermaphrodites. 5. Our study provides experimental evidence for various mathematical models in which female fitness is maximized at intermediate mating rates.  相似文献   

16.
Evolution of Rotifer Life Histories   总被引:1,自引:0,他引:1  
When compared to most other multicellular animals, rotifers are all relatively small, short-lived and fast-reproducing organisms. However among and within different rotifer species there is a large variation in life history patterns. This review accounts for such variation in rotifers, with a strong focus on monogonont rotifers. As the life cycle of monogonont rotifers involves both asexual and sexual reproduction, life history patterns can be examined on the level of the genetic individual, which includes all asexual females, sexual females and males that originated from one resting egg. This concept has been applied successfully in many areas, for example in predicting optimal levels of mictic reproduction or sex allocation theory. The benefits and implications of the view of the genetic individual are discussed in detail. Rotifer life histories can also be viewed on the level of physiological individuals. A large part of this review deals with the life histories of individual amictic females and addresses life history traits like body size, egg size and resource allocation patterns. It asks which trade-offs exist among those traits, how these traits change under the influence of environmental factors like food availability or temperature, and whether these changes can be interpreted as adaptive.  相似文献   

17.
Size‐dependent reproductive success of wild zebrafish Danio rerio was studied under controlled conditions in the laboratory to further understand the influence of spawner body size on reproductive output and egg and larval traits. Three different spawner size categories attained by size‐selective harvesting of the F1‐offspring of wild D. rerio were established and their reproductive performance compared during a 5 day period. As to be expected, large females spawned more frequently and had significantly greater clutch sizes than small females. Contrary to expectations, small females produced larger eggs when measured as egg diameter with similar amounts of yolk compared to eggs spawned by large spawners. Eggs from small fish, however, suffered from higher egg mortality than the eggs of large individuals. Embryos from small‐sized spawners also hatched later than offspring from eggs laid by large females. Larval standard length (LS)‐at‐hatch did not differ between the size categories, but the offspring of the large fish had significantly larger area‐at‐hatch and greater yolk‐sac volume indicating better condition. Offspring growth rates were generally similar between offspring from all size categories, but they were significantly higher for offspring spawned by small females in terms of LS between days 60 and 90 post‐fertilization. Despite temporarily higher growth rates among the small fish offspring, the smaller energy reserves at hatching translated into lower condition later in ontogeny. It appeared that the influence of spawner body size on egg and larval traits was relatively pronounced early in development and seemed to remain in terms of condition, but not in growth, after the onset of exogenous feeding. Further studies are needed to explore the mechanisms behind the differences in offspring quality between large‐ and small‐sized spawners by disentangling size‐dependent maternal and paternal effects on reproductive variables in D. rerio.  相似文献   

18.
19.
Brood cell parasitism inflicts high fitness costs on solitary,nest-constructing bees. Many of these parasites enter open cellsduring its provisioning, when the mother bee is absent. Therefore,females can reduce the risk of open-cell parasitism by limitingthe time they are away from the nest. However, provisioningefficiency (provisioning time per unit of progeny body mass)decreases due to aging. To limit the increasing risk of open-cellparasitism as the nesting season progresses, female bees couldoptimize their maternal investment strategy by shifting thesex ratio and the body size of offspring during the nestingseason. This prediction was tested in the Red Mason bee Osmiarufa (O. bicornis), a stem- or hole-nesting, polylectic, univoltinemegachilid bee. In O. rufa, the risk of open-cell parasitismwas found to be correlated with cell provisioning time. Additionally,the provisioning efficiency of females declined during the nestingseason to one-fourth of the initial value. However, cell-provisioningtime did not increase correspondingly. Bees dealt with theirdecreasing provisioning efficiency by reducing the amount ofstored larval food, leading to a reduction of offspring sizeand a seasonal shift toward males in the offspring sex ratio.The influence of provisioning efficiency and risk of open-cellparasitism on optimal offspring size was analyzed by means ofa statistical model. The observed maternal investment patternof Red Mason bees is an adaptive strategy to reduce open-cellparasitism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号