首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age‐related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP‐fused firefly luciferase (Fluc‐EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc‐EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc‐EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington’s disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc‐EGFP reporter mice enable new insights into proteostasis alterations in different diseases.  相似文献   

2.
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein.  相似文献   

3.
Aging and age‐related diseases are associated with a decline of protein homeostasis (proteostasis), but the mechanisms underlying this decline are not clear. In particular, decreased proteostasis is a widespread molecular feature of neurodegenerative diseases, such as Alzheimer's disease (AD). Familial AD is largely caused by mutations in the presenilin encoding genes; however, their role in AD is not understood. In this study, we investigate the role of presenilins in proteostasis using the model system Caenorhabditis elegans. Previously, we found that mutations in C. elegans presenilin cause elevated ER to mitochondria calcium signaling, which leads to an increase in mitochondrial generated oxidative stress. This, in turn, promotes neurodegeneration. To understand the cellular mechanisms driving neurodegeneration, using several molecular readouts of protein stability in C. elegans, we find that presenilin mutants have widespread defects in proteostasis. Markedly, we demonstrate that these defects are independent of the protease activity of presenilin and that reduction in ER to mitochondrial calcium signaling can significantly prevent the proteostasis defects observed in presenilin mutants. Furthermore, we show that supplementing presenilin mutants with antioxidants suppresses the proteostasis defects. Our findings indicate that defective ER to mitochondria calcium signaling promotes proteostatic collapse in presenilin mutants by increasing oxidative stress.  相似文献   

4.
Mu TW  Ong DS  Wang YJ  Balch WE  Yates JR  Segatori L  Kelly JW 《Cell》2008,134(5):769-781
Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the former's ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.  相似文献   

5.
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis.  相似文献   

6.
7.
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.

The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.  相似文献   

8.
Introduction: Proteins have been historically regarded as ‘nature’s robots’: Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly.

Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s, along with Down syndrome, ophthalmic pathologies, and cancer.

Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.  相似文献   


9.
Aging and age‐related diseases are accompanied by proteome remodeling and progressive declines in cellular machinery required to maintain protein homeostasis (proteostasis), such as autophagy, ubiquitin‐mediated degradation, and protein synthesis. While many studies have focused on capturing changes in proteostasis, the identification of proteins that evade these cellular processes has recently emerged as an approach to studying the aging proteome. With advances in proteomic technology, it is possible to monitor protein half‐lives and protein turnover at the level of individual proteins in vivo. For large‐scale studies, these technologies typically include the use of stable isotope labeling coupled with MS and comprehensive assessment of protein turnover rates. Protein turnover studies have revealed groups of highly relevant long‐lived proteins (LLPs), such as the nuclear pore complexes, extracellular matrix proteins, and protein aggregates. Here, the role of LLPs during aging and age‐related diseases and the methods used to identify and quantify their changes are reviewed. The methods available to conduct studies of protein turnover, used in combination with traditional proteomic methods, will enable the field to perform studies in a systems biology context, as changes in proteostasis may not be revealed in studies that solely measure differential protein abundances.  相似文献   

10.
Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration. This highlights the relevance of the full protein context where the polyglutamine expansion occurs and suggests different interactions with the cellular proteostasis machinery. Molecular chaperones are key elements of the proteostasis machinery and therapeutic targets for neurodegeneration. Here, we provide a focused review on Hsp90, Hsp70, and their co-chaperones, and how their genetic or pharmacological modulation affects the proteostasis and disease phenotypes in cellular and animal models of polyglutamine disorders. The emerging picture is that, in principle, Hsp70 modulation may be more amenable for long-term treatment by promoting a more selective clearance of mutant proteins than Hsp90 modulation, which may further decrease the necessary wild-type counterparts. It seems, nevertheless, unlikely that a single Hsp70 modulator will benefit all polyglutamine diseases. Indeed, available data, together with insights from effects on tau and alpha-synuclein in models of Alzheimer’s and Parkinson’s diseases, indicates that Hsp70 modulators may lead to different effects on the proteostasis of different mutant and wild-type client proteins. Future studies should include the further development of isoform selective inhibitors, namely to avoid off-target effects on Hsp in the mitochondria, and their characterization in distinct polyglutamine disease models to account for client protein-specific differences.  相似文献   

11.
12.
13.
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions.Subject terms: Protein quality control, Metabolic pathways, Ageing  相似文献   

14.
The health of cells is preserved by the levels and correct folding states of the proteome, which is generated and maintained by the proteostasis network, an integrated biological system consisting of several cytoprotective and degradative pathways. Indeed, the health conditions of the proteostasis network is a fundamental prerequisite to life as the inability to cope with the mismanagement of protein folding arising from genetic, epigenetic, and micro-environment stress appears to trigger a whole spectrum of unrelated diseases. Here we describe the potential functional role of the proteostasis network in tumor biology and in conformational diseases debating on how the signaling branches of this biological system may be manipulated to develop more efficacious and selective therapeutic strategies. We discuss the dual strategy of these processes in modulating the folding activity of molecular chaperones in order to counteract the antithetic proteostasis deficiencies occurring in cancer and loss/gain of function diseases. Finally, we provide perspectives on how to improve the outcome of these disorders by taking advantage of proteostasis modeling.  相似文献   

15.
All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC‐dependent modulation of proteostasis requires several different signaling pathways, including hsf‐1 and daf‐16/kri‐1/tcer‐1, daf‐12, daf‐9, daf‐36, nhr‐80, and pha‐4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.  相似文献   

16.
The production of newly synthesized proteins is a key process of protein homeostasis that initiates the biosynthetic flux of proteins and thereby determines the composition, stability and functionality of the proteome. Protein synthesis is highly regulated on multiple levels to adapt the proteome to environmental and physiological challenges such as aging and proteotoxic conditions. Imbalances of protein folding conditions are sensed by the cell that then trigger a cascade of signaling pathways aiming to restore the protein folding equilibrium. One regulatory node to rebalance proteostasis upon stress is the control of protein synthesis itself. Translation is reduced as an immediate response to perturbations of the protein folding equilibrium that can be observed in the cytosol as well as in the organelles such as the endoplasmatic reticulum and mitochondria. As reduction of protein synthesis is linked to life span increase, the signaling pathways regu-lating protein synthesis might be putative targets for treatments of age-related diseases. Eukaryotic cells have evolved a complex system for protein synthesis regulation and this review will summarize cellular strategies to regulate mRNA translation upon stress and its impact on longevity.  相似文献   

17.
Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition.  相似文献   

18.
Inheriting a mutant misfolding-prone protein that cannot be efficiently folded in a given cell type(s) results in a spectrum of human loss-of-function misfolding diseases. The inability of the biological protein maturation pathways to adapt to a specific misfolding-prone protein also contributes to pathology. Chemical and biological therapeutic strategies are presented that restore protein homeostasis, or proteostasis, either by enhancing the biological capacity of the proteostasis network or through small molecule stabilization of a specific misfolding-prone protein. Herein, we review the recent literature on therapeutic strategies to ameliorate protein misfolding diseases that function through either of these mechanisms, or a combination thereof, and provide our perspective on the promise of alleviating protein misfolding diseases by taking advantage of proteostasis adaptation.  相似文献   

19.
Heat shock protein 70 (Hsp70) is a molecular chaperone and central regulator of protein homeostasis (proteostasis). Paramount to this role is Hsp70’s binding to client proteins and co-chaperones to produce distinct complexes, such that understanding the protein–protein interactions (PPIs) of Hsp70 is foundational to describing its function and dysfunction in disease. Mounting evidence suggests that these PPIs include both “canonical” interactions, which are universally conserved, and “non-canonical” (or “secondary”) contacts that seem to have emerged in eukaryotes. These two categories of interactions involve discrete binding surfaces, such that some clients and co-chaperones engage Hsp70 with at least two points of contact. While the contributions of canonical interactions to chaperone function are becoming increasingly clear, it can be challenging to deconvolute the roles of secondary interactions. Here, we review what is known about non-canonical contacts and highlight examples where their contributions have been parsed, giving rise to a model in which Hsp70’s secondary contacts are not simply sites of additional avidity but are necessary and sufficient to impart unique functions. From this perspective, we propose that further exploration of non-canonical contacts will generate important insights into the evolution of Hsp70 systems and inspire new approaches for developing small molecules that tune Hsp70-mediated proteostasis.  相似文献   

20.
Protein homeostasis (proteostasis) generates and maintains individual proteins in their folded and functional-competent states. The components of the cellular proteostasis machinery also dictate the functional lifetime of a protein by constantly regulating its conformation, concentration and subcellular location. The autosomal recessive disease cystic fibrosis (CF) is caused by a proteostasis-defect in CF transmembrane conductance regulator (CFTR). The most common CF mutation leading to this proteostasis-defect is the deletion of a phenylalanine residue at position 508 (ΔF508) of the CFTR protein. This ΔF508-CFTR protein is prone to aberrant folding, increased ER-associated degradation, atypical intracellular trafficking and reduced stability at the apical membrane. This ΔF508-CF proteostasis-defect leads to an obstructive lung disease characterized by impaired ion transport in airway epithelial cells, mucus buildup in air space and chronic airway inflammation. We assess here whether correcting the underlying defect in ΔF508-CFTR protein processing using therapeutic proteostasis regulators can treat chronic CF lung disease. As a proof of concept, recent studies support that the selective modulation of mutant-CFTR proteostasis may offer promising therapies to reverse chronic CF lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号