首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

2.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.  相似文献   

3.
Forests are sources of wood, non‐timber forest products and ecosystems services and goods that benefit society as a whole, and are especially important to rural livelihoods. Forest landscape restoration (FLR) has been proposed as a way to counteract deforestation and reconcile the production of ecosystem services and goods with conservation and development goals. But limited evidence indicates how large‐scale forest restoration could contribute to improving local livelihoods. Here, we present a conceptual framework to analyze the effects of large‐scale restoration on local livelihoods, and use it to review the scientific literature and reduce this knowledge gap. Most of the literature referred to case studies (89%), largely concentrated in China (49%). The main theme explored was income, followed by livelihoods diversification, off‐farm employment opportunities, poverty reduction, equity and the provision of timber and energy as ecosystem services. Nearly 60 percent of the papers discussed the importance of governance systems to socioeconomic outcomes. The reforestation/restoration programs and policies investigated in the studies had mixed socioeconomic effects on local livelihoods depending on other variables, such as availability of off‐farm jobs, household characteristics, land productivity, land tenure, and markets for forest products and ecosystem services. We conclude that the effects of large‐scale restoration initiatives on local livelihoods may vary due to several factors and is still not clear for many situations; therefore, monitoring over time with clear indicators is needed.  相似文献   

4.
Tree species that produce resources for fauna are recommended for forest restoration plantings to attract pollinators and seed dispersers; however, information regarding the flowering and fruiting of these species during early growth stages is scarce. We evaluated the reproductive phenology of animal‐dispersed tree species widely used in Atlantic Forest restoration. We marked 16 animal‐dispersed tree species in 3‐ to 8‐year‐old forest restoration plantings in Itu‐São Paulo, southeast Brazil. We noted the age of the first reproductive event, flowering and fruiting seasonality, percentage of trees that reached reproductive stages, and intensity of bud, flower, and fruit production for each species. Flowering and fruiting are seasonal for most species; only two, Cecropia pachystachya and Ficus guaranitica, exhibited continuous flowering and fruiting throughout the year; we also identified Schinus terebinthifolia and Dendropanax cuneatus fruiting in the dry season during resource scarcity. Therefore, we recommend all as framework species, that is, species that are animal‐dispersed with early flowering and fruiting potential, for forest restoration. Further, we recommend identifying and planting similar animal‐dispersed tree species that produce fruits constantly or in the dry season to maximize fauna resource availability throughout the year in tropical forest restoration plantings. Abstract in Portuguese is available with online material  相似文献   

5.
Natural regeneration offers a cheaper alternative to active reforestation and has the potential to become the predominant way of restoring degraded tropical landscapes at large‐scale. We conducted a meta‐analysis for tropical regions and quantified the relationships between both ecological and socioeconomic factors and biodiversity responses in naturally regenerating areas. Biogeographic realms, past disturbance, and the human development index (HDI) were used as explanatory variables for biodiversity responses. In addition, we present a case study of large‐scale natural regeneration in the Brazilian Atlantic Forest and identify areas where different forms of restoration would be most suitable. Using our dataset for tropical regions, we showed that natural regeneration was predominantly reported within: the Neotropical realm; areas that were intensively disturbed; and countries with medium HDI. We also found that biodiversity in regenerating forests was more similar to the values found in old growth forests in: countries with either low, high, or very high HDI; less biodiverse realms; and areas of less intensive past disturbance. Our case study from Brazil showed that the level of forest gain resulting from environmental legislation, in particular the Brazilian Forest Code, has been reduced, but remains substantial. Complementary market incentives and financial mechanisms to promote large‐scale natural regeneration in human‐modified agricultural landscapes are also needed. Our analysis provides insights into the factors that promote or limit the recovery of biodiversity in naturally regenerating areas, and aids to identify areas with higher potential for natural regeneration.  相似文献   

6.
7.
The Forest and Landscape Restoration movement has emerged as an approach to reconcile biodiversity conservation, ecosystem services provisioning and human well‐being in degraded landscapes, but little is known so far about the potential of different reforestation methods to achieve these objectives. Based on this gap, we assessed the ecological outcomes and local livelihood benefits of community‐managed agroforests and second growth forests to assist natural regeneration in the coastal Atlantic Forest of Brazil. We investigated and compared agroforests and secondary forests according to their structure and floristic composition in 51 circular plots of 314 m², their role in supporting local livelihoods (45 semi‐structured interviews) and the use and cultural importance of plant species (61 interviews). Agroforests and, more remarkably, managed secondary forests (1) re‐established a well‐developed forest structure, with a higher density of tree‐sized individuals and similar basal area compared to nearby old growth forests; (2) were composed by a rich array of native species, including five threatened species, but had lower species richness than old growth remnants; and (3) improved local livelihoods by supplying market valuable and culturally important plants, including 231 native ethnospecies. Overall, local production systems showed remarkable potential to engage smallholders of developing tropical countries in Forest and Landscape Restoration and contribute to achieve its overall goals. We advocate the promotion of these systems as effective Forest and Landscape Restoration approaches in multi‐scale programs and policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号