首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy—large species richness and abundance supporting the same traits—can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large‐scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long‐term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities’ initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast‐growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.  相似文献   

2.
Invasive species and bottom‐water hypoxia both constitute major global threats to the diversity and integrity of marine ecosystems. These stressors may interact with unexpected consequences, as invasive species that require an initial environmental disturbance to become established can subsequently become important drivers of ecological change. There is recent evidence that improved bottom‐water oxygen conditions in coastal areas of the northern Baltic Sea coincide with increased abundances of the invasive polychaetes Marenzelleria spp. Using a reactive‐transport model, we demonstrate that the long‐term bioirrigation activities of dense Marenzelleria populations have a major impact on sedimentary phosphorus dynamics. This may facilitate the switch from a seasonally hypoxic system back to a normoxic system by reducing the potential for sediment‐induced eutrophication in the upper water column. In contrast to short‐term laboratory experiments, our simulations, which cover a 10‐year period, show that Marenzelleria has the potential to enhance long‐term phosphorus retention in muddy sediments. Over time bioirrigation leads to a substantial increase in the iron‐bound phosphorus content of sediments while reducing the concentration of labile organic carbon. As surface sediments are maintained oxic, iron oxyhydroxides are able to persist and age into more refractory forms. The model illustrates mechanisms through which Marenzelleria can act as a driver of ecological change, although hypoxic disturbance or natural population declines in native species may be needed for them to initially become established. Invasive species are generally considered to have a negative impact; however, we show here that one of the main recent invaders in the Baltic Sea may provide important ecosystem services. This may be of particular importance in low‐diversity systems, where disturbances may dramatically alter ecosystem services due to low functional redundancy. Thus, an environmental problem in one region may be either exacerbated or alleviated by a single species from another region, with potentially ecosystem‐wide consequences.  相似文献   

3.
Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8‐year long‐term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C3‐dominant plant community to a perennial C4‐dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from ?17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time‐dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change.  相似文献   

4.
We used a 93‐year‐old mine waste contamination gradient in alluvial soil to explore the relationship between ecosystem level functioning and community structure in a chronically stressed ecosystem. The sensitivity of broad functional parameters (in situ soil respiration, microbial biomass, above and below ground plant biomass) and microbial diversity [phospholipid fatty acid (PLFA) abundance and richness] were compared. Functional responses were linear with respect to contaminants while thresholds were detected in the community structural response to contamination along the gradient. For example, in situ soil respiration was negatively and linearly correlated to contamination concentration (R = ?0.783, P < 0.01), but changes in microbial community structure only became evident where contaminant concentrations were greater than 28 times above background levels. Our results suggest that functional redundancy does not prevent depression of ecosystem function in the long‐term.  相似文献   

5.
This study documents the stingless bees' (Meliponinae) recent displacement in the Yucatan (Quintana Roo, Mexico) and the effects of human‐induced ecosystem disturbance on bee diversity. Point observations of flower‐visiting bees were made along transects in three communities with different degrees of human‐induced ecosystem disturbance. The community with the greatest anthropogenic disturbance had lower overall species richness of stingless bees and the highest degree of dominance of the Africanized honeybee (Apis mellifera scutellata), while the area with the most intact ecosystem had the highest diversity of stingless bees, though A. mellifera was still the dominant species. We observed aggressive competitive behavior involving physical attacks by A. mellifera against stingless bees, indicating that Africanized honeybees are adopting new behaviors to compete better with dominant native pollinator species.  相似文献   

6.
In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool‐ and warm‐temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta‐analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus reveal a ‘disturbance paradox’, documenting that disturbances can put ecosystem services at risk while simultaneously facilitating biodiversity. A detailed investigation of disturbance effect sizes on carbon storage and biodiversity further underlined these divergent effects of disturbance. While a disturbance event on average causes a decrease in total ecosystem carbon by 38.5% (standardized coefficient for stand‐replacing disturbance), it on average increases overall species richness by 35.6%. Disturbance‐management approaches such as salvage logging and prescribed burning were neither found significantly to mitigate negative effects on ecosystem services nor to enhance positive effects on biodiversity, and thus were not found to alleviate the disturbance paradox. Considering that climate change is expected to intensify natural disturbance regimes, our results indicate that biodiversity will generally benefit from such changes while a sustainable provisioning of ecosystem services might come increasingly under pressure. This underlines that disturbance risk and resilience require increased attention in ecosystem management in the future, and that new approaches to addressing the disturbance paradox in management are needed.  相似文献   

7.
In the conservation literature on land‐use change, it is often assumed that land‐use intensification drives species loss, driving a loss of functional trait diversity and ecosystem function. Modern research, however, does not support this cascade of loss for all natural systems. In this paper we explore the errors in this assumption and present a conceptual model taking a more mechanistic approach to the species–functional trait association in a context of land‐use change. We provide empirical support for our model's predictions demonstrating that the association of species and functional trait diversity follows various trajectories in response to land‐use change. The central premise of our model is that land‐use change impacts upon processes of community assembly, not species per se. From the model, it is clear that community context (i.e. type of disturbance, species pool size) will affect the response trajectory of the relationship between species and functional trait diversity in communities undergoing land‐use change. The maintenance of ecosystem function and of species diversity in the face of increasing land‐use change are complementary goals. The use of a more ecologically realistic model of responses of species and functional traits will improve our ability to make wise management decisions to achieve both aims in specific at‐risk systems.  相似文献   

8.
Disturbance can impact natural communities in multiple ways. However, there has been a tendency to focus on single indicators of change when examining the effects of disturbance. This is problematic as classical diversity measures, such as Shannon and Simpson indices, do not always detect the effects of disturbance. Here, we instead take a multilevel, hierarchical approach, looking for signatures of disturbance in the capacity and diversity of the community, and also in allocation and demography at the population level. Using recreational use as an example of disturbance, and the freshwater streams of Trinidad as a model ecosystem, we repeatedly sampled the fish communities and physical parameters of eight pairs of recreational and nonrecreational sites every 3 months over a 28‐month period. We also chose the Trinidadian guppy (Poecilia reticulata) as the subject of our population‐level analyses. Regression tree analysis, together with analysis of deviance, revealed that community capacity and community species richness were greater at sites with higher levels of recreational use. Interestingly, measures of community diversity that took into account the proportional abundance of each species were not significantly associated with recreational use. Neither did we find any direct association between recreational use and proportion of guppy biomass in the community. However, population‐level differences were detected in the guppy: Sex ratio was significantly more female‐biased at more disturbed sites. Our findings emphasize the importance of considering multiple levels when asking how disturbance impacts a community. We advocate the use of a multilevel approach when monitoring the effects of disturbance, and highlight gaps in our knowledge when it comes to interpreting these effects.  相似文献   

9.
Differential species responses to atmospheric CO2 concentration (Ca) could lead to quantitative changes in competition among species and community composition, with flow‐on effects for ecosystem function. However, there has been little theoretical analysis of how elevated Ca (eCa) will affect plant competition, or how composition of plant communities might change. Such theoretical analysis is needed for developing testable hypotheses to frame experimental research. Here, we investigated theoretically how plant competition might change under eCa by implementing two alternative competition theories, resource use theory and resource capture theory, in a plant carbon and nitrogen cycling model. The model makes several novel predictions for the impact of eCa on plant community composition. Using resource use theory, the model predicts that eCa is unlikely to change species dominance in competition, but is likely to increase coexistence among species. Using resource capture theory, the model predicts that eCa may increase community evenness. Collectively, both theories suggest that eCa will favor coexistence and hence that species diversity should increase with eCa. Our theoretical analysis leads to a novel hypothesis for the impact of eCa on plant community composition. This hypothesis has potential to help guide the design and interpretation of eCa experiments.  相似文献   

10.
In the last two decades, the relationship between diversity and stability/ecosystem functioning has been widely discussed and has become a central issue in ecology. Here, we assessed the relationship between wetland plant diversity and community resilience after a disturbance. Our study area was located in the Upper Paraná River floodplain (Brazil). An experiment was carried out in situ (18 1 m × 1 m plots with richness varying from 1 to 18 species). In each plot, we recorded the number of species, total per cent vegetation cover and per cent age cover of each species. The above‐ground biomass of wetland plants was removed, simulating a disturbance by animal trampling or an extreme flood. The recovery of vegetation was monitored over 3 months. According to a linear regression, the recovery of wetland plants was positively correlated with diversity. Comparisons with plots containing monocultures of one of the dominant species (Polygonum stelligerum) suggested that this species did not overyield in mixed cultures. Thus, our experiments indicate that the higher resilience in richer plots after a disturbance is mainly due to the fact that species have different resource use requirements (complementarity effect) and not due to the presence of a single, more productive species. Our experiment carried out in a more real condition (in situ) showed that biodiversity is important to wetland functioning and stability, paralleling the results obtained in laboratory and mesocosms experiments. These results also suggest that the loss of plant diversity in our study area could compromise community recovery following strong disturbances.  相似文献   

11.
We compared four existing process‐based stand‐level models of varying complexity (physiological principles in predicting growth, photosynthesis and evapotranspiration, biogeochemical cycles, and stand to ecosystem carbon and evapotranspiration simulator) and a new nested model with 4 years of eddy‐covariance‐measured water vapor (LE) and CO2 (Fc) fluxes at a maturing loblolly pine forest. The nested model resolves the ‘fast’ CO2 and H2O exchange processes using canopy turbulence theories and radiative transfer principles whereas slowly evolving processes were resolved using standard carbon allocation methods modified to improve leaf phenology. This model captured most of the intraannual variations in leaf area index (LAI), net ecosystem exchange (NEE), and LE for this stand in which maximum LAI was not at a steady state. The model comparisons suggest strong linkages between carbon production and LAI variability, especially at seasonal time scales. This linkage necessitates the use of multilayer models to reproduce the seasonal dynamics of LAI, NEE, and LE. However, our findings suggest that increasing model complexity, often justified for resolving faster processes, does not necessarily translate into improved predictive skills at all time scales. Additionally, none of the models tested here adequately captured drought effects on water and CO2 fluxes. Furthermore, the good performance of some models in capturing flux variability on interannual time scales appears to stem from erroneous LAI dynamics and from sensitivity to droughts that injects unrealistic flux variability at longer time scales.  相似文献   

12.
The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic fungus Rhizoctonia solani caused significant increase in alpha diversity of the rhizobacterial community and led to partial or complete loss of disease protection. A reassembly model is proposed where bacterial families that are heat tolerant and have high growth rates significantly increase in relative abundance after heat disturbance, while temperature‐sensitive and slow‐growing bacteria have a disadvantage. The results also pointed to a potential role of slow‐growing, heat‐tolerant bacterial families from Actinobacteria and Acidobacteria phyla in plant disease protection. In conclusion, short heat disturbance of soil results in rearrangement of rhizobacterial communities and this is correlated with changes in the ecosystem service disease suppression.  相似文献   

13.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

14.
Questions: How can one explicitly quantify, and separately measure, stress and disturbance gradients? How do these gradients affect functional composition in early successional plant communities and to what extent? Can we accurately predict trait composition from knowledge of these gradients? Location: Southern Quebec, Canada. Methods: Using eight environmental variables measured in 48 early successional plant communities, we estimated stress and disturbance gradients through structural equation modelling. We then measured 10 functional traits on the most abundant species of these 48 communities and calculated their community‐level mean and variance weighted by the relative abundance of each species. Finally, we related these community‐weighted means and variances to the estimated stress and disturbance gradients using general linear models or generalized additive models. Results: We obtained a well‐fitting measurement model of the stress and disturbance gradients existing in our sites. Of the 10 studied traits, only average plant reproductive height was strongly correlated with the stress (r2=0.464) and disturbance (r2=0.543) gradients. Leaf traits were not significantly related to either the stress or disturbance gradients. Conclusions: The well‐fitting measurement model of the stress and disturbance gradients, combined with the generally weak trait–environment linkages, suggests that community assembly in these early successional plant communities is driven primarily by stochastic processes linked to the history of arrival of propagules and not to trait‐based environmental filtering.  相似文献   

15.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   

16.
17.
  • 1 We investigated photosynthesis‐irradiance relationships (P‐I curves; P = oxygen production rate due to photosynthesis, I = light irradiance rate at the water surface) and ecosystem respiration in a 9 km long reach of a river that is characterised by light conditions favouring primary production, high ambient nutrient concentrations, a high re‐aeration rate, and frequent spates. We addressed the question of how disturbances (spates) and season influence photosynthesis and ecosystem respiration.
  • 2 We used an oxygen mass‐balance model of the river to identify ecosystem respiration rates and the two parameters of a hyperbolic P‐I function (Pmax = maximum oxygen production rate due to photosynthesis, α = the initial slope of the P‐I function). The model was fitted to dissolved oxygen concentrations quasi‐continuously recorded at the end of the reach. We estimated parameters for 137 three‐day periods (during the years 1992–97) and subsequently explored the potential influence of season and disturbances (spates) on Pmax, α and ecosystem respiration using stepwise regression analysis.
  • 3 Photosynthesis‐irradiance relationships and ecosystem respiration were subject to distinct seasonal variation. Only a minor portion of the variability of P‐I curves could be attributed to disturbance (spates), while ecosystem respiration did not correlate with disturbance related parameters. Regular seasonal variation in photosynthesis and ecosystem respiration apparently prevailed due to the absence of severe disturbances (a lack of significant bedload transport during high flow).
  相似文献   

18.
Recent studies suggest that species with similar functional traits will have similar effects on ecosystems, but evidence for redundancy of species impacts is limited. Here we use a long‐term experiment to gain insight into functional relationships within a desert rodent community. Experimental removal of kangaroo rats, Dipodomys spp., coupled with the recent, serendipitous colonization of a single species of large pocket mouse Chaetodipus baileyi yielded treatments that differed in the diversity of large granivorous rodents present. We evaluated functional overlap of C. baileyi and the other resident large granivores (i.e. the kangaroo rats) by comparing total energy use of granivorous rodents and total abundance and species richness of small granivores across treatments before and after the arrival of C. baileyi. We found that C. baileyi almost completely compensated for the changes in these key ecosystem‐level properties caused by kangaroo rat removal, but it differentially impacted the population dynamics of individual small granivorous rodent species. Thus, its effects were largely complementary, rather than redundant, to those of the missing kangaroo rats. Although short‐term or single‐measure analyses may suggest redundancy, our results support the longstanding dictum that niches of coexisting species are often similar but rarely, if ever, identical.  相似文献   

19.
Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator–prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe‐haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose (Alces alces) density and wolf (Canis lupus) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator–prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.  相似文献   

20.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号